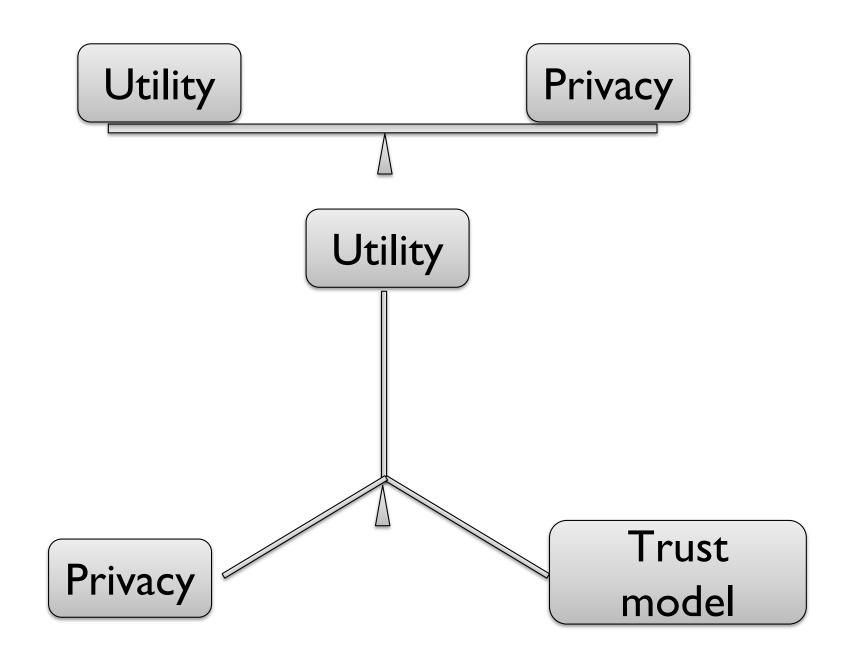
BU CS599 Spring 2025

Lecture 24: Distributed Models

Jonathan Ullman NEU Adam Smith BU



Distributed Models

Local Differential Privacy

Randomized Response Strikes Back

Limitations of the Model

Cryptographic Tools

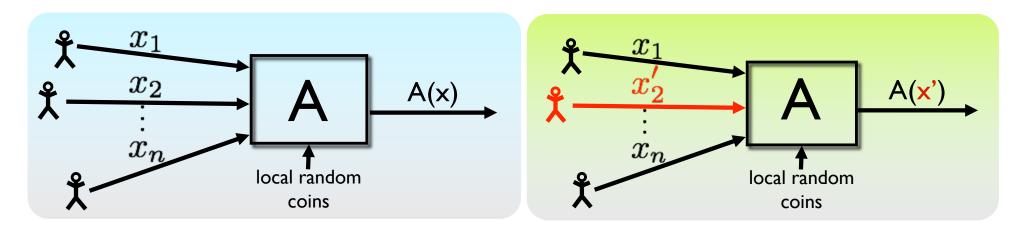
Encryption

Multiparty Computation

• What's next?

- Efficient "federated" protocols?
- Minimal crypto primitives?

Differential Privacy



x' is a neighbor of x if they differ in one data point

Neighboring databases induce **close** distributions on outputs

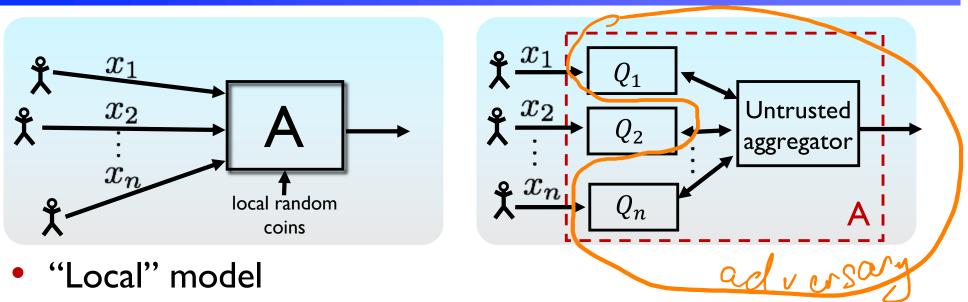
for all neighbors x, x',

Definition: A is ε -differentially private if,

for all sets of outputs T

$$\Pr_{\text{coins of } A}(A(\mathbf{x}) \in T) \le e^{\varepsilon} \cdot \Pr_{\text{coins of } A}(A(\mathbf{x}') \in T)$$

Local Model for Privacy

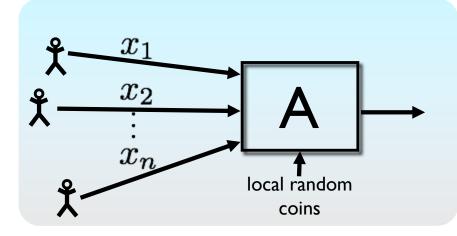


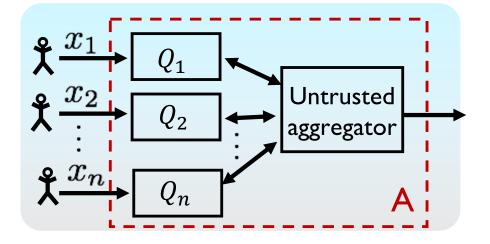
 \succ Person *i* randomizes their own data

 \succ Attacker sees everything except player *i*'s local state

• Definition: A is ε -locally differentially private if for all i: > for all neighbors x, x' that differ in position i> for all local coins r_{-i} of all other parties, > for all transcripts t: $\Pr_{coins r_i} (A(x, r_{-i}) = t) \le e^{\varepsilon} \cdot \Pr_{coins r_i} (A(x', r_{-i}) = t)$ Many method.

Local Model for Privacy





Pros

- No trusted curator
- No single point of failure
- Highly distributed
- Beautiful algorithms
- Cons
 - Lower accuracy
 - Proportions: $\Theta\left(\frac{1}{\varepsilon\sqrt{n}}\right)$ error [Beimel-Nissim-Omri'08,Chan-Shi-Song'12,Duchi-Jordan-Wainwright'13, Joseph-Mao-Neel-Roth'19] vs $O\left(\frac{1}{n\varepsilon}\right)$ central
 - Selection: $\Theta\left(\frac{1}{\varepsilon}\sqrt{\frac{d}{n}}\right)$ error [DJW13, Ullman17] vs $\Theta\left(\frac{\log d}{n\varepsilon}\right)$ central [exp. mechanism]
 - Correctness requires honesty (e.g. [Cheu-Smith-Ullman '21])

Reminder: Randomized response

- Each person has data $x_i \in \mathcal{X}$
 - → Analyst wants to know sum of φ : $X \rightarrow \{0,1\}$ over x
- Randomization operator takes $z \in \{0,1\}$:

$$R(\mathbf{z}) = \begin{cases} \mathbf{z} & w.p.\frac{e^{\varepsilon}}{e^{\varepsilon}+1} \\ 1 - \mathbf{z} & w.p.\frac{1}{e^{\varepsilon}+1} \end{cases}$$

How can we estimate a proportion?

$$A(x_1, \dots, x_n):$$
• For each *i*, let $Y_i = R(\varphi(x_i))$

• Return $A = \sum_{i}^{b} (aY_i - b)$

Set
$$a = \frac{e^{\varepsilon} + 1}{e^{\varepsilon} - 1}$$
, $b = \frac{1}{e^{\varepsilon} - 1}$ to get $\mathbb{E}(A) = \sum_{i} \varphi(x_{i})$

• **Proposition:** $\sqrt{\mathbb{E}(A - \sum_{i} \varphi(x_{i}))^{2}} \leq \frac{e^{\varepsilon/2}}{e^{\varepsilon} - 1} \sqrt{n}$. $\approx \frac{\sqrt{n}}{\varepsilon}$ when ε small

Randomized response is optimal

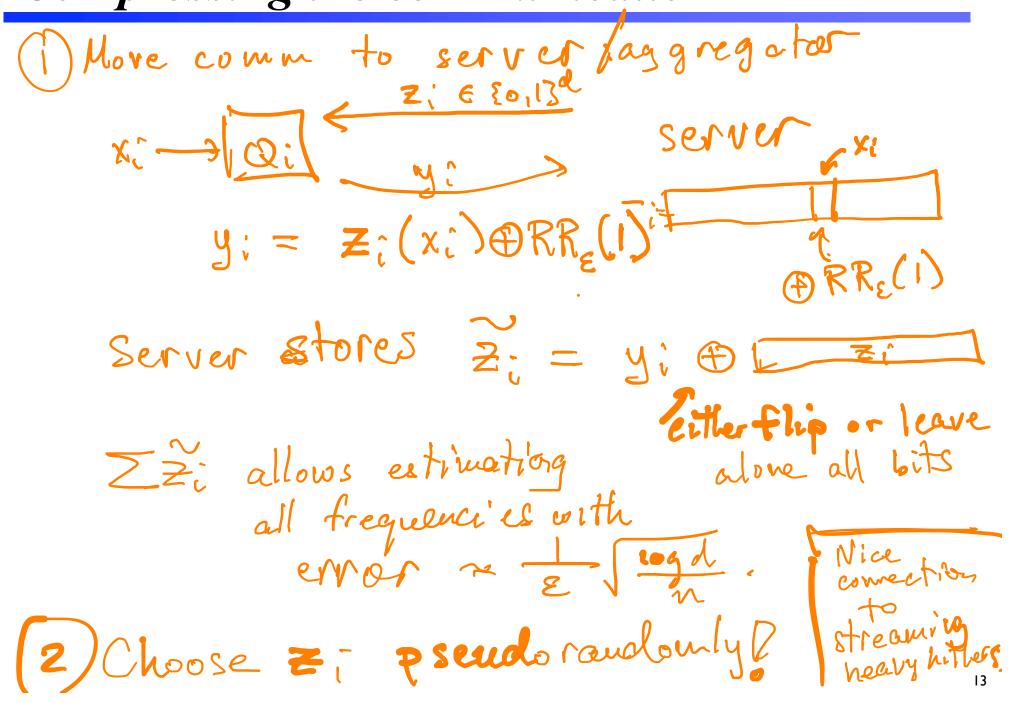
- **Theorem**: Every LDP algorithm has worst-case error $\Omega(\frac{1}{c_n/n})$ for estimating proportion of I's. > Cleanest proof via mutual information argument
- Simpler theorem: Every noninteractive LDP algorithm with $\varepsilon \leq 1$ has worst-case error $\Omega\left(\frac{1}{\sqrt{n}}\right)$. Fix randomizers Q_{1}, \ldots, Q_{n} .

 - · Pick X. Vn ~ vid Eo.13 (untorn)
 - 1) Xi are still independent! 2) Pr(Xi=0 [Yi=yi] = (Bayerine) > e - 1 2) conditional distrib 3) on $\frac{1}{n} \sum X$: has variance $\Omega(n) = \frac{1}{3}$

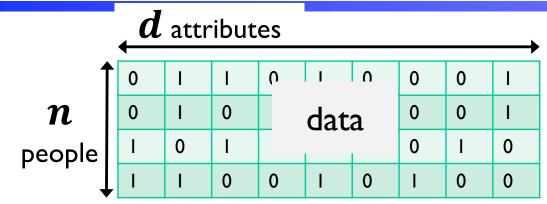
Case Study: Histograms/Heavy Hitters

- Inputs: $x_1, \ldots, x_n \in [d]$
- Goal: Find $n_1, n_2, ..., n_d \in \mathbb{N}$, where $n_j = \#\{i: x_i = j\}$
- How can use RR?
 - I. Randomized the input directly:
 - a) Write each x_i as string in $\{0,1\}^{\log d}$
 - b) Apply $RR_{\varepsilon'}$ to each bit (for $\varepsilon' \approx \varepsilon/\sqrt{\log d}$)
 - 2. Randomize the one-hot encoding of x_i
 - a) Write $x_i \in [d]$ as $(0,0, \dots, 0,1,0, \dots, 0)$ with 1 in position x_i
 - b) Homework I, Problem 3: Can apply $RR_{\varepsilon/2}$ to each bit.
 - c) Estimate frequency of all items with error $O\left(\frac{1}{\varepsilon}\sqrt{\frac{\ln d}{n}}\right)$
 - d) Drawbacks?
 - (Communication)

Compressing the communication



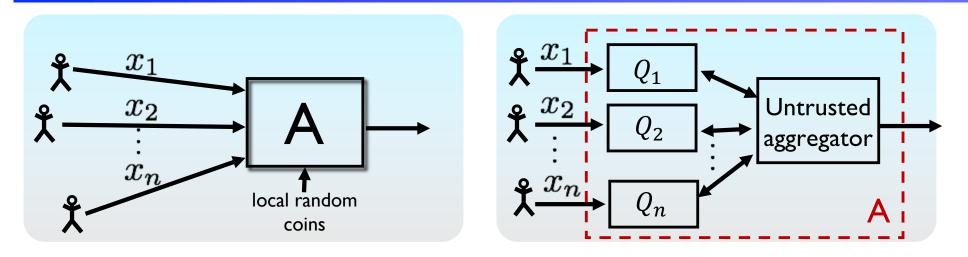
Selection Lower Bounds



- Suppose each person has d binary attributes
- **Goal**: Find index *j* with highest count $(\pm \alpha)$
- Central model: $n = O(\log(d)/\epsilon\alpha)$ suffices [McSherry Talwar '07]
- Local model: Any noninteractive local DP protocol with nontrivial error requires $n = \Omega(d \log(d) / \varepsilon^2)^{2}$

▷ [DJW'13, Ullman '17]

Local Model for Privacy



What other models allow similarly distributed trust?

Distributed Models

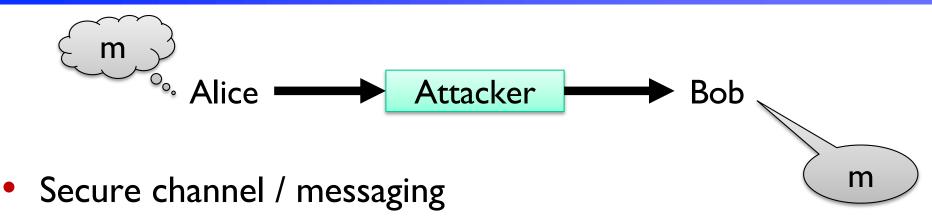
Local Differential Privacy Randomized Response Strikes Back Limitations of the Model Cryptographic Tools Encryption Multiparty Computation What's next? Efficient "federated" protocols?

Minimal crypto primitives?

Cryptography

- Powerful set of tools for controlling access to information and computation
- Two main aspects (for today)
 - Secure channels
 - Secure computation

Secure channels



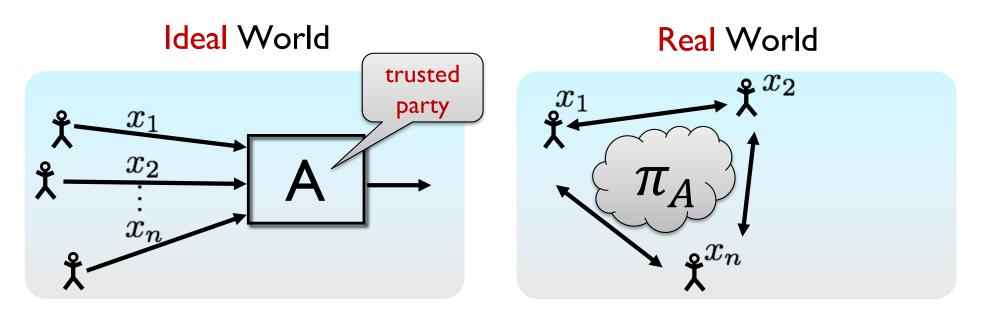
- Most widely used form of crypto
- Think of Signal or WhatsApp
- Two main components
 - > Encryption: ensure only a specific set of people can read a message
 - Only Bob can read Alice's email
 - Authentication: ensure that one of a specific set of people sent a message
 - Bob knows that Alice sent a message
- Security comes from secret, random keys

Requires infrastructure to generate and distribute keys

"Secure computation"

- Other cryptographic tools allow doing computations without directly seeing data, e.g.
 - > Multiparty computation and secure function evaluation
 - Homomorphic encryption
 - Secure delegation
- Example applications:
 - BU wants to use Amazon servers to
 - Store its data
 - Process the data (e.g. generate monthly reports)
 - ... without letting Amazon see the data
 - Auction
 - Buyers submit bids
 - Everyone wants to learn who the winning bidder was
 - Auctioneer and winner should know the amount
 - \succ Joint statistics
 - Boston-area businesses compute average gender salary gaps

Multiparty Computation [80's]



- Given an algorithm A with n inputs that we would like to run, an MPC protocol π_A for A allows n participants to
 - \succ Execute A on their individual inputs x_1, \dots, x_n
 - \succ All receive the correct output a (given the inputs)
 - Reveal nothing except the information that is implied by a (and whatever subset of inputs the adversary knows)

... even when the adversary controls many of the participants

What secure computation does not provide

 Guarantees that participants only learn the output of the computation

➢ e.g. auction winner, average wages

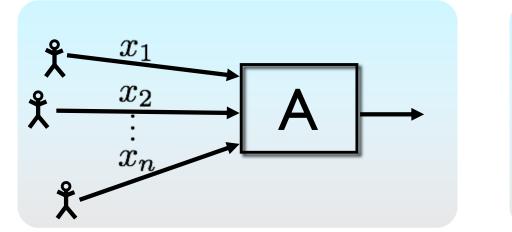
- No guarantees about what those outputs reveal
 - > Auction winner learns upper bound on all other bids
 - Average salary before and after one resignation reveals that person's salary
 - > ML models may leak training data

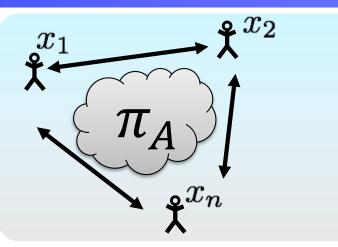
Privacy & Crypto

This course: privacy leakage of outputs

- Crypto: Works well when there are bright lines separating "inside" from "outside"
 - Psychiatrist and patient
 - Google and advertiser
- Data privacy: have to release some data at the expense of others
 - Different from "secure function evaluation"
 - SFE: how do we securely distribute a computation we've agreed on?
 - Data privacy: what computation should we perform?

Two great tastes that go great together



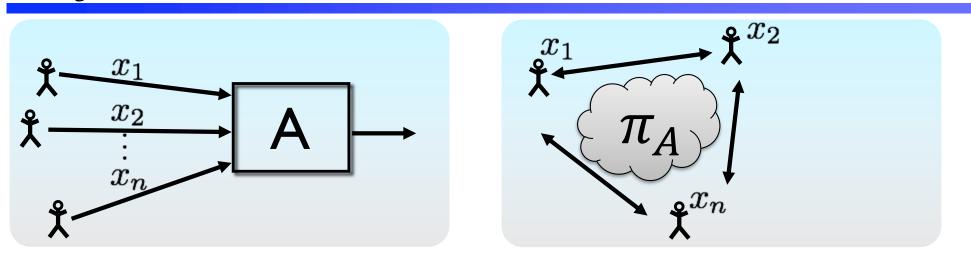


- How can we get accuracy without a trusted curator?
- Idea: Replace central algorithm A with multiparty computation (MPC) protocol for A (randomized), and either
 - Secure channels + honest majority
 - Computational assumptions + PKI

• Questions:

- What definition does this achieve?
- Are there special-purpose protocols that are more efficient than generic reductions?
- What communication models make sense?
- What primitives are needed?
 - Summation and "shuffling" are the most studied

Definitions



What definitions are achieved?

• Simulation of an (ε, δ) -DP protocol

Not equivalent

Computational DP [Mironov, Pandey, Reingold, Vadhan'08]

Definition: A is (t, ε, δ) -computationally differentially private if, for all neighbors x, x', for all distinguishers $T \in time(t)$ $\Pr_{\text{coins of }A}(T(A(x)) = 1) \leq e^{\varepsilon} \cdot \Pr_{\text{coins of }A}(T(A(x')) = 1) + \delta$

Distributed Models

Local Differential Privacy

Randomized Response Strikes Back

Limitations of the Model

Cryptographic Tools

Encryption

Multiparty Computation

• What's next?

- Efficient "federated" protocols?
- Minimal crypto primitives?