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Prelude: Membership Inference

* Last time: robust membership inference in mean estimation

* More general setup:
» X1, s Xn ~iia. P

> W « A(Xy, ..., X))
» Goal is to approximately minimize population loss

Lp(w) = Ex_p(£(w; X))
(or empirical loss)

> Test is given (W,Y)
where Y is either X; for I ~ [n] or X, ~ P.

* Some test statistics T (W, y) ...
» Loss: £(W; y)
» Score: (VZ(w*;y),w — w") where w* = argmin,, Lp(w)
» Gradient: (VZ(W;y),w — w™)

* Plots for regularized linear regression:



https://colab.research.google.com/drive/1UTOlfHvL3qKSp8UrJMpwqsTjSBuEzF7b
https://colab.research.google.com/drive/1UTOlfHvL3qKSp8UrJMpwqsTjSBuEzF7b
https://colab.research.google.com/drive/1UTOlfHvL3qKSp8UrJMpwqsTjSBuEzF7b

Machine learning models contain
unnecessary, irrelevant

information about their training data.



Memorization can be explicit...
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Hastie, Tibshirani, and Friedman. The elements of statistical learning: data
mining, inference, and prediction. Springer Science & Business Media, 2009. Wikipedia, Support vector machine (20 August 2020)



... but commonly an unintended side effect
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g Stable Diffusion vl .4

Current language models memorize

irrelevant information.

N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F.
Tramer, B. Balle, D. Ippolito, E. Wallace
Extracting Training Data from Diffusion Models (2023)



Memorization + fitting or interpolation

[Feldman 20]
In natural problems, memorization
of training labels is necessary
no matter the learning algorithm.

Data LEbeIs

Prior work:
storing the labels
you’ve seen

0 1

Christopher Bishop, “Pattern Recognition and Machine Learning,” 2006

Today: memorizing
examples is
(sometimes) e

necessary

Q
What does this

exactly mean!?



Why Does Memorization Matter?

® Privacy Lol 3¢ MLt
» Adam D. Smith’s SSN is 123-45-6789 AT
» Models are trained on PHA, FOUND THEM!

* Your phone’s photos
* Your email and text messages

* Your web browsing habits

* Your social media posts

. WHEN YOU TRAIN PREDICTIVE MODELS
® COP)’I‘Ight ON INPUT FROM YOUR USERS, IT CAN

LEAK INFORMATION IN UNEXPECTED LAYS.
» Huge issue currently: LLMs are trained on web data

» Several law suits in progress \ARanAT SAMSUNG

» GitHub’s Copilot leaked code from Ul awx
textbooks (1) o FER

* Some of Samsung’s code was leaked after
engineers fed it to ChatGPT in prompts



https://githubcopilotlitigation.com/pdf/06823/1-0-github_complaint.pdf

Why Does Memorization Matter?

* Models are getting bigger!

» More opportunities for memorization
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Why Does Memorization Matter?

* The role of memory,
and how we generalize from it,
is central to cognition

* Kids (often) memorize first, then understand later

» E.g. “here you go” is learned as “heego”

TR L




Machine learning models contain
information about their training data.

Today: Two Results

» In natural settings,
memorization of nearly entire examples is
necessary for every learning algorithm,
even when many details are irrelevant.

» In natural settings,
every one-pass learning algorithm requires
large memory because of memorization

10



Machine learning models contain
information about their training data.

Today: Two Results

In natural settings,

memorization of nearly entire examples is
necessary for every learning algorithm,
even when many details are irrelevant.




Main Result: First Pass

test point Y
Labels | - | 0.
n i 4 ey ,
,correct/mcorrect
rows :
© = Learning = = 0 n
|.|.d. Algorithm Error =
~ e, Pr® (incorrect)
¢ d bits/row w7 X ~p&™
--------------------
What does M tell us about X?

Main result (roughly): There are natural tasks such that for

every learning algorithm with error within 0.1 of optimal,
I(X;M)=>c-n-d.

4 Mutual information [ (4; B)

m of two random variables 4, B

measures how much info
N B has about A (in bits)

~




Example task: hypercube cluster labeling
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Data come from ‘“clusters”

* Hypercube cluster: O ... o
» Sparse set of fixed bits o ¢ go
> Other bits filled in at random -

* Points from the same cluster o
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Fixed in cluster j

*
*
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are closer than random

001010010004001 || J
T~ —

Learning task: identify which Randomly filled in
cluster generated input point

* Lots of examples from cluster = learn fixed bits

* Few examples = cannot discern which bits matter



Main Result: First Pass (Again)

test point Y
Labels | - | 0.
n i 4 ey ,
> correct/incorrect
rows :
© = Learning = = 0 n
|.|.d. Algorithm Error =
~ e, Pr® (incorrect)
¢ d bits/row w7 X ~p&™
-------------------
What does M tell us about X?

Main result (roughly): There are natural tasks such that for
every learning algorithm with error within 0.1 of optimal,

I(X;M)=>c-n-d.



Main Result: Irrelevant Information

test datum Y
Labels

[ - ) 0.
n AR
FOWS 3 ) - correct/incorrect
° = IS = = o .
i.i.d. Algo”thm Error =
~ P I PPr (incorrect)
d bits/row ¢
X ~p®n
First, sample problem Algorlthr.n k-nows Q, Cl(/);;
FsErEe 9~ ) but P a priori unknown

Theorem: There is a natural task @, ;5 such that for every learning
algorithm with error < OPT,, ; + 0.1,

I(X;M|P)=c-n-d,
where M stores

irrelevant info

® p, a problem instance, is a distribution on labeled examples

* P, arandom variable, is chosen from meta-distribution Q,, 4

® OPT, 4 is the best possible average error for Q;, 4



Main Result: Memorizing Whole Examples

test datum Y
Labels

| _ | D\\
n \\\\
rows [ s - correct/incorrect
ow :
- = Learr.ung = = o . -
Li.d. S Algorithm rror =
~ P Pr - (incorrect)
d bits/row %
X ~p®n
YT'P
Special examples: coins

the “singletons”

Theorem: There is a natural problem @, ; for which
every data set X has a subset of rows S € X such that

e |S| = c - n with high probability

Lots of “singletons”

* For every learning algorithm with error OPT73\; + €,
I(S;M|P) =d-|S|- (1= f(e))
where f(e) » 0as e = 0.

M stores everything
about the examples in S.

Even though irrelevant.



Related Work

* Models must memorize labels [Feldman 20]

* Learners that leak little information
[Bassily, Moran, Nachum, Shafer, Yehudayoff 18, Nachum, Shafer, Yehudayoff |8]

» Lower bounds for PAC-Bayes framework [Livni. Morap->2" :
. . Lower bound is
* Representation complexity Q(nloglogd) and
[Beimel, Nissim, Stemmer |3, Feldman, Xiao 14] O(nlogd)

> Lower bound on models’ size for a class C

) . ] " Lower bounds on
» Reflects information about P, not just X L I(P; M), not
: : I(X;M|P
* Time-space tradeoffs for learning )

» [Shamir 14, ..., Raz 18, ...] Lower bounds for streaming model
» Our results are on size of final model
* To compete with best learner on n points, need large model
°* More:
» Information bottlenecks,
» Minimum description length

> ...



Understanding good generalization

Common explanations for large models

|. Expressivity
2. Optimization is easier

3. Implicit regularization leads to good generalization

Our results suggest an additional factor:

4. Large models store information whose usefulness isn’t

yet “understood” ,
%Thls work

» Small subpopulations

»> Adapting to new domains



Lower bounds by looking at singletons

Singletons setup from [Feldman 20]

test datum Y
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Special examples S(X),
the “singletons”

Typical data set has (n) singletons. Proof strategy:

@ Accurate — Accurate when test sample comes
overall from singleton subpopulation

@ Accurate on - Reveal near-complete
singletons information about singletons

Via (new) information complexity lower
bounds for “one-shot” learning




From hypercube clusters to 1 -out—of k NN

Data X, ..., Xi

Learning
Algorithm

dk bits

orrect/ incorrect

Fixed in cluster j :
Per-cluster distribution: ! %b't fixed w.p.p |

Label

001010010001001 | J

Tt —

Randomly filled in

°* Game: Alice gets only k singletons X3, ..., X
> Xj~F
> Bob gets a sample from cluster | € [k]
° Equivalently,
> Alice gets uniform in ({O 1}d)k
> Bob data distributed as Y ~ BSC1- p(X])
for uniform | € [k].

Xy X,
o X
- 3
Y
C,\’?ﬂp\gc'hQ bit
X] with prob 1;2’) Xy

» Bob must guess |

* Corollary: Alice and Bob’s best strategy solves nearest neighbor.




From hypercube clusters to 1 -out—of k NN

Data X, ..., Xi

correct/ incorrect

Learning
Algorithm

Lower bounds for nearest neighbor

dk bits

Theorem: If Bob succe%ds w.p. OPT — o(1),

] — . OX1 X5
1(X; M) T 0(1)) kd 0 X,
for appropriate p.
* Use Strong Data Prcoessing Inequality Y
as in [Hadar, Liu, Polyanskiy, Shayevitz 19] X]J"t(:f\hgfbb‘f;p .

Conjecture: If Bob succeeds w.p. OPT — 0(1),
I(X; M) = (1 —0(1))kd.




Trying out an attack

* Generate data from hypercube clusters learning task
» Recall: each subpopulation has one label
* Learners:

» Multiclass logistic regression

» Multilayer perceptron

[ ]
O 6 © ©°
o
~
N\
)
-’

* Adversary gets: °

Maximize probability

» Query access to model :
given to label j

» “Label j was a singleton”

* Adversary strategy: maximize probability of label j

* Look at error vs training time



Logistic Regression and Neural Network

Experimental Setup:

‘ Z: iggoezgm/ples | In both cases, recover
® = Its examp e o . ’ .
sl 9500 ot bits fixed = 98% of the singletons’ bits

* Train with gradient descent

Multiclass Multilayer Perceptron
Logistic Regression

1.0 - 104 -

0.8 A 0.8 1

0.6 - 0.6
Attack

Error

0.4 0.4 1

Errors (rescaled)

0.2 0.2 1

0.0 A 0.0 A
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Gradient Steps Gradient Steps



Machine learning models contain
information about their training data.

Today
>

In natural settings,
every one-pass learning algorithm requires
large memory because of memorization

28



(The remaining material was
not covered in class)



Streaming Model of Learning [1990°s]

test datum Y

d bits/row
roT\le - correct/mcorrect
~ P
Cost driven by
d bits/row - — — — — ~ * Time to update
£y Update * Size (in bits) of
L DMl intermediate states
n g Updae L. My, M,, ..., M,
rows o | M; Intermediate states
“‘; _EP | arbitrary (not classifiers)
. I : I test datum Y

j | ﬂ | u\\
o e M cormecy
N _———— >%:> O--~  incorrect



How Much Space? \ L e,
e

Goal: Understand space as a function of... V{,:ﬂwp
e d: data dimension (examples in {0,1}%) P b

. o )
® k: size of a “good” model

® 7. stream length
Our work:
* Natural sparse regression problems for which nontrivial

prediction requires memory () (dK *:SD for arbitrary d, k.

\ minimal # samples

Linear regression [Sharan, Sidford, Valiant ‘I8, —
A Dagan, Kur, Shamir ‘19] stream length Parity

7 ' [Raz]

- N ;
o) i | Sparse regression over implicit features i
g L [Our work] i
T Q-
i | //// i S
e Stream length n 2K
klog(1/€)



How Much Space? \ e
s -

Goal: Understand space as a function of... V{,:ﬂwp

e d: data dimension (examples in {0,1}%) P b
. o )

® k: size of a “good” model

® 7. stream length

Our work:

* Natural sparse regression problems for which nontrivial
prediction requires memory () (dK - S) for arbitrary d, k.

How “natural”? Examples include

* Multi-class sparse logistic regression
K

° Binary -sparse logistic regression

logd
over degree-2 polynomial features

» Space usage scales with ambient dimension, not model or example size



Machine learning models contain
information about their training data.

Today

» In natural settings,
memorization of nearly entire examples is
necessary for every learning algorithm,
even when many details are irrelevant.

» In natural settings,
every one-pass learning algorithm requires
large memory because of memorization

36



Future Work

* Models reflecting complex real world

» In our case, “true” model is sparse multiclass logistic
regression

* Algorithms that provably extract memorized info

* Connections between memorization and
» Further data/memory tradeoffs
» Limited-access data models

» PAC-Bayes obstacles

* Does faster optimization “require” more
memorization?



