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Prelude: Membership Inference
• Last time: robust membership inference in mean estimation
• More general setup: 

Ø 𝑋!, … , 𝑋" ∼#.#.%. 𝑃
Ø &𝑊 ← 𝐴 𝑋!, … , 𝑋"
Ø Goal is to approximately minimize population loss 

𝐿& 𝑤 = 𝔼'∼& ℓ 𝑤; 𝑋
(or empirical loss)

Ø Test is given ( &𝑊, 𝑌)
where 𝑌 is either 𝑋) for 𝐼 ∼ 𝑛 or 𝑋* ∼ 𝑃.

• Some test statistics 𝑇 "𝑤, 𝑦 …
Ø Loss: ℓ(5𝑤; 𝑦)
Ø Score: ⟨∇ℓ 𝑤∗; 𝑦 , 5𝑤 − 𝑤∗⟩ where 𝑤∗ = argmin, 𝐿&(𝑤)
Ø Gradient: ⟨∇ℓ 5𝑤; 𝑦 , 5𝑤 − 𝑤∗⟩

• Plots for regularized linear regression: 
https://colab.research.google.com/drive/1UTOlfHvL3qKSp8
UrJMpwqsTjSBuEzF7b#scrollTo=197a8284-63a3-405a-af75-
2dbf942723cf

https://colab.research.google.com/drive/1UTOlfHvL3qKSp8UrJMpwqsTjSBuEzF7b
https://colab.research.google.com/drive/1UTOlfHvL3qKSp8UrJMpwqsTjSBuEzF7b
https://colab.research.google.com/drive/1UTOlfHvL3qKSp8UrJMpwqsTjSBuEzF7b


Machine learning models contain 

information about their training data.

3

unnecessary, irrelevant



Memorization can be explicit…

Hastie, Tibshirani, and Friedman. The elements of statistical learning: data 
mining, inference, and prediction. Springer Science & Business Media, 2009.

4

Wikipedia, Support vector machine (20 August 2020)



… but commonly an unintended side effect

[Carlini et al. 20]
Current language models memorize 

irrelevant information.

Figure 8: Selected training examples that we extract from a diffusion model trained on CIFAR-10 by sampling from
the model 1 million times. Top row: generated output from a diffusion model. Bottom row: nearest (`2) example
from the training dataset. Figure 17 in the Appendix contains all 1,280 unique extracted images.

5.2 Membership Inference Attacks

We now evaluate membership inference with more tra-
ditional attack techniques that use white-box access, as
opposed to Section 4.2.1 that assumed black-box access.
We will show that all examples have significant privacy
leakage under membership inference attacks, compared
to the small fraction that are sensitive to data extraction.
We consider two membership inference attacks on our
class-conditional CIFAR-10-trained diffusion models.7

The loss threshold attack. Yeom et al. [80] introduce
the simplest membership inference attack: because mod-
els are trained to minimize their loss on the training set,
we should expect that training examples have lower loss
than non-training examples. The loss threshold attack
thus computes the loss l = L (x; f ) and reports “mem-
ber” if l < t for some chosen threshold t and otherwise
“non-member’. The value of t can be selected to max-
imize a desired metric (e.g., true positive rate at some
fixed false positive rate or the overall attack accuracy).

The Likelihood Ratio Attack (LiRA). Carlini et al.
[8] introduce the state-of-the-art approach to performing
membership inference attacks. LiRA first trains a col-
lection of shadow models, each model on random sub-
sets of the training dataset. LiRA then computes the loss
L (x; fi) for the example x under each of these shadow
models fi. These losses are split into two sets: the losses
IN = {lini} for the example x under the shadow models
{ fi} that did see the example x during training, and the
losses OUT = {louti} for the example x under the shadow
models { f j} that did not see the example x during train-
ing. LiRA finishes the initialization process by fitting
Gaussians NIN to the IN set and NOUT to OUT set of
losses. Finally, to predict membership inference for a
new model f ⇤, we compute l⇤ = L (x, f ⇤) and then mea-
sure whether Pr[l⇤|NIN ] > Pr[l⇤|NOUT ].

Choosing a loss function. Both membership inference
attacks use a loss function L . In the case of classifica-
tion models, Carlini et al. [8] find that choosing a loss

7Appendix C.4 replicates these results for unconditional models.

function is one of the most important components of the
attack. We find that this effect is even more pronounced
for diffusion models. In particular, unlike classifiers that
have a single loss function (e.g., cross entropy) used to
train the model, diffusion models are trained to minimize
the reconstruction loss when a random quantity of Gaus-
sian noise e has been added to an image. This means that
“the loss” of an image is not well defined—instead, we
can only ask for the loss L (x, t,e) of an image x for a
certain timestep t with a corresponding amount of noise
e (cf. Equation (1)).

We must thus compute the optimal timestep t at which
we should measure the loss. To do so, we train 16
shadow models each on a random 50% of the CIFAR-
10 training dataset. We then compute the loss for every
model, for every example in the training dataset, and ev-
ery timestep t 2 [1,T ] (T = 1,000 in the models we use).

Figure 9 plots the timestep used to compute the loss
against the attack success rate, measured as the true pos-
itive rate (TPR), i.e., the number of examples which truly
are members over the total number of members, at a fixed
false positive rate (FPR) of 1%, i.e., the fraction of exam-
ples which are incorrectly identified as members. Eval-
uating L at t 2 [50,300] leads to the most successful
attacks. We conjecture that this a “Goldilock’s zone” for
membership inference: if t is too small, and so the noisy
image is similar to the original, then predicting the added
noise is easy regardless if the input was in the training
set; if t is too large, and so the noisy image is similar to
Gaussian noise, then the task is too difficult. Our remain-
ing experiments will evaluate L (·, t, ·) at t = 100, where
we observed a TPR of 71% at an FPR of 1%.

5.2.1 Baseline Attack Results

We now evaluate membership inference using our speci-
fied loss function. We follow recent advice [8] and evalu-
ate the efficacy of membership inference attacks by com-
paring their true positive rate to the false positive rate
on a log-log scale. In Figure 10, we plot the member-
ship inference ROC curve for the loss threshold attack
and LiRA. An out-of-the-box implementation of LiRA

9

N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. 
Tramèr, B. Balle, D. Ippolito, E. Wallace
Extracting Training Data from Diffusion Models (2023)

Extraction from 
Stable Diffusion v1.4



Memorization ≠ fitting or interpolation

Christopher Bishop, “Pattern Recognition and Machine Learning,” 2006

[Feldman 20]
In natural problems, memorization 

of training labels is necessary
no matter the learning algorithm. 

Data Labels

Today: memorizing 
examples is 
(sometimes) 
necessary

Prior work: 
storing the labels 

you’ve seen

What does this 
exactly mean?



Why Does Memorization Matter?
• Privacy

ØAdam D. Smith’s SSN is 123-45-6789
ØModels are trained on 

• Your phone’s photos
• Your email and text messages
• Your web browsing habits
• Your social media posts

• Copyright
ØHuge issue currently: LLMs are trained on web data
ØSeveral law suits in progress

• GitHub’s Copilot leaked code from 
textbooks (link)

• Some of Samsung’s code was leaked after 
engineers fed it to ChatGPT in prompts

https://githubcopilotlitigation.com/pdf/06823/1-0-github_complaint.pdf


Why Does Memorization Matter?
• Models are getting bigger!

ØMore opportunities for memorization 

[Villalobos et al, July 2022]



Why Does Memorization Matter?
• The role of memory, 

and how we generalize from it, 
is central to cognition

• Kids (often) memorize first, then understand later
ØE.g. “here you go” is learned as “heego”

https://myheartland.net/classroom-applications-of-cognitive-psychology/
https://theweeklychallenger.com/three-key-benefits-black-children-find-in-early-childhood-education/



Machine learning models contain 
information about their training data.

10

Today: Two Results 

Ø In natural settings, 
memorization of nearly entire examples is 
necessary for every learning algorithm,
even when many details are irrelevant. 

Ø In natural settings, 
every one-pass learning algorithm requires
large memory because of memorization



Machine learning models contain 
information about their training data.
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Today: Two Results 

Ø In natural settings, 
memorization of nearly entire examples is 
necessary for every learning algorithm,
even when many details are irrelevant. 

Ø In natural settings, 
every one-pass learning algorithm requires
large memory because of memorization



Main Result: First Pass

Main result (roughly): There are natural tasks such that for 
every learning algorithm with error within 0.1 of optimal,

𝐼 𝑋;𝑀 ≥ 𝑐 ⋅ 𝑛 ⋅ 𝑑.

12

𝑑 bits/row

𝑛
rows
i.i.d.
∼ 𝑝

Error =
Pr

! ~#⊗"
$~#
%&'()

(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡)

Data 𝑋 Classifier 
𝑀

Learning 
Algorithm

test point 𝑌

correct/incorrect

𝑛 ⋅ 𝑑 bits

Labels

𝑑 ≫ 𝑛
What does 𝑀 tell us about 𝑋?

Mutual information 𝐼(𝐴; 𝐵)
of two random variables 𝐴,𝐵

measures how much info
𝐵 has about 𝐴 (in bits)



Example task: hypercube cluster labeling
Data come from “clusters”
• Hypercube cluster:

ØSparse set of fixed bits
ØOther bits filled in at random

• Points from the same cluster 
are closer than random

Learning task: identify which 
cluster generated input point

• Lots of examples from cluster ⇒ learn fixed bits
• Few examples ⇒ cannot discern which bits matter

𝑗

Fixed in cluster 𝑗

001010010001001
Label

Randomly filled in



Main Result: First Pass (Again)
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𝑑 bits/row

𝑛
rows
i.i.d.
∼ 𝑝

𝑑 ≫ 𝑛

Data 𝑋 Classifier 
𝑀

Learning 
Algorithm

test point 𝑌

correct/incorrect

What does 𝑀 tell us about 𝑋?

Main result (roughly): There are natural tasks such that for 
every learning algorithm with error within 0.1 of optimal,

𝐼 𝑋;𝑀 ≥ 𝑐 ⋅ 𝑛 ⋅ 𝑑.

Labels

Error =
Pr

! ~#⊗"
$~#
%&'()

(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡)



Main Result: Irrelevant Information

Theorem: There is a natural task 𝑄/,1 such that for every learning 
algorithm with error ≤ 𝑂𝑃𝑇/,1 + 0.1,

𝐼 𝑋;𝑀 ∣ 𝑃 ≥ 𝑐 ⋅ 𝑛 ⋅ 𝑑,
where
• 𝑝, a problem instance, is a distribution on labeled examples
• 𝑃, a random variable, is chosen from meta-distribution 𝑄/,1
• 𝑂𝑃𝑇/,1 is the best possible average error for 𝑄/,1

15

𝑀 stores 
irrelevant info

𝑑 bits/row

𝑛
rows
i.i.d.
∼ 𝑃

Data 𝑋 Classifier 
𝑀

Learning 
Algorithm

test datum 𝑌

correct/incorrect

Algorithm knows 𝑄,
but 𝑃 a priori unknown

First, sample problem 
instance  𝑃 ∼ 𝑄

Labels

Error =
Pr
#∼+

! ~#⊗"
$~#
%&'()

(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡)



Main Result: Memorizing Whole Examples

Theorem: There is a natural problem 𝑄/,1 for which 
every data set 𝑋 has a subset of rows 𝑆 ⊆ 𝑋 such that
• 𝑆 ≥ 𝑐 ⋅ 𝑛 with high probability 
• For every learning algorithm with error O𝑃𝑇/,1 + 𝜖, 

𝐼 𝑆;𝑀|𝑃 ≥ 𝑑 ⋅ 𝑆 ⋅ 1 − 𝑓 𝜖
where 𝑓 𝜖 → 0 as 𝜖 → 0.
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Lots of “singletons”

𝑀 stores everything 
about the examples in 𝑆.
Even though irrelevant.

𝑑 bits/row

𝑛
rows
i.i.d.
∼ 𝑃

Data 𝑋 Classifier 
𝑀

Learning 
Algorithm

test datum 𝑌

𝑆

correct/incorrect

Special examples:
the “singletons”

Labels

Error =
Pr
#∼+

! ~#⊗"
$~#
%&'()

(𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡)



Related Work
• Models must memorize labels [Feldman 20]

• Learners that leak little information
[Bassily, Moran, Nachum, Shafer, Yehudayoff 18, Nachum, Shafer, Yehudayoff 18]

Ø Lower bounds for PAC-Bayes framework [Livni, Moran 20]

• Representation complexity 
[Beimel, Nissim, Stemmer 13, Feldman, Xiao 14]

Ø Lower bound on models’ size for a class C
Ø Reflects information about 𝑃, not just 𝑋

• Time-space tradeoffs for learning
Ø [Shamir 14, …, Raz 18, …] Lower bounds for streaming model
Ø Our results are on size of final model

• To compete with best learner on 𝑛 points, need large model

• More:
Ø Information bottlenecks, 
Ø Minimum description length
Ø …

Lower	bound	is	
Ω 𝑛 log log 𝑑 and 

𝑂(𝑛 log 𝑑)

Lower	bounds	on	
𝐼(𝑃;𝑀), not 
𝐼(𝑋;𝑀|𝑃)



Understanding good generalization
Common explanations for large models

1. Expressivity
2. Optimization is easier
3. Implicit regularization leads to good generalization

4. Large models store information whose usefulness isn’t 
yet “understood”
Ø Small subpopulations
Ø Adapting to new domains

Our results suggest an additional factor:

This work



Lower bounds by looking at singletons

Typical data set has Ω 𝑛 singletons. Proof strategy:

Special examples 𝑆(𝑋),
the “singletons”

Accurate 
overall

Accurate when test sample comes 
from singleton subpopulation

Accurate on 
singletons

Reveal near-complete 
information about singletons

⇒

⇒

1

2

Singletons setup from [Feldman 20]

! bits/row

"
rows
i.i.d..
∼ $

Data ! Classifier 
"

Learning 
Algorithm

test datum !

#(!)

Binary
labels

Via (new) information complexity lower 
bounds for “one-shot” learning



From hypercube clusters to 1-out-of-𝒌 NN

Per-cluster distribution:

• Game: Alice gets only 𝑘 singletons 𝑋#, … , 𝑋$
Ø 𝑋! ∼ 𝑃!
Ø Bob gets a sample from cluster 𝐽 ∈" [𝑘]

• Equivalently,
Ø Alice gets uniform in 0,1 # $

Ø Bob data distributed as 𝑌 ∼ 𝐵𝑆𝐶#$%
&
𝑋%

for uniform 𝐽 ∈ [𝑘].
Ø Bob must guess 𝐽

• Corollary: Alice and Bob’s best strategy solves nearest neighbor.

𝑑𝑘 bits

Classifier 
𝑀

Learning 
Algorithm

correct/incorrect
Data 𝑋,, … , 𝑋-

𝑋!

𝑋"

𝑋#
𝑋$

𝑋%

𝑌
Flip each bit 
with prob !"#

$

𝑗

Fixed in cluster 𝑗

001010010001001
Label

Randomly filled in

Each bit fixed w.p. 𝜌



From hypercube clusters to 1-out-of-𝒌 NN

Lower bounds for nearest neighbor 

Theorem: If Bob succeeds w.p. 𝑂𝑃𝑇 − 𝑜(1),
𝐼 𝑋;𝑀 =

1
2 ln2 − 𝑜 1 𝑘𝑑

for appropriate 𝜌.
• Use Strong Data Prcoessing Inequality 

as in [Hadar, Liu, Polyanskiy, Shayevitz 19]

Conjecture: If Bob succeeds w.p. 𝑂𝑃𝑇 − 𝑜(1),
𝐼 𝑋;𝑀 = 1 − 𝑜 1 𝑘𝑑.

𝑑𝑘 bits

Classifier 
𝑀

Learning 
Algorithm

correct/incorrect
Data 𝑋,, … , 𝑋-

𝑋!

𝑋"

𝑋#
𝑋$

𝑋%

𝑌
Flip each bit 
with prob !"#

$



Trying out an attack
• Generate data from hypercube clusters learning task

ØRecall: each subpopulation has one label

• Learners:
ØMulticlass logistic regression
ØMultilayer perceptron

• Adversary gets:
ØQuery access to model
Ø “Label 𝑗 was a singleton”

• Adversary strategy: maximize probability of label 𝑗

𝑥
𝑓(𝑥)

• Look at error vs training time

Maximize probability 
given to label 𝑗



Logistic Regression and Neural Network

Multiclass
Logistic Regression

Multilayer Perceptron
(Single Hidden Layer)

Test Error

Train
Error

Attack
Error

Gradient Steps Gradient Steps

Train
Error

Test Error

Attack
Error

Er
ro

rs
 (

re
sc

al
ed

)

In both cases, recover
≥ 98% of the singletons’ bits

Experimental Setup:
• 𝑛 = 500 examples
• 𝑑 = 1000 bits/example
• 𝜌 ≈ 25% of bits fixed
• Train with gradient descent



Machine learning models contain 
information about their training data.
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Today

Ø In natural settings, 
memorization of nearly entire examples is 
necessary for every learning algorithm,
even when many details are irrelevant. 

Ø In natural settings, 
every one-pass learning algorithm requires
large memory because of memorization



(The remaining material was 
not covered in class)



Streaming Model of Learning [1990’s]
𝑑 bits/row

𝑛
rows
i.i.d.
∼ 𝑃

Data 𝑋 Classifier 
𝑀

Learner

test datum 𝑌

correct/incorrect

𝑑 bits/row

𝑛
rows
i.i.d.
∼ 𝑃

Datum 𝑋,

Classifier 
𝑀(

Update

test datum 𝑌

correct/
incorrect

Datum 𝑋.

Datum 𝑋/

Datum 𝑋(

Update

Update

Finalize

⋮ ⋮

Cost driven by
• Time to update
• Size (in bits) of 

intermediate states 
𝑀@, 𝑀A, … ,𝑀/

Intermediate states 
arbitrary (not classifiers)

𝑀@

𝑀A

𝑀/B@



How Much Space?
Goal: Understand space as a function of…
• 𝑑: data dimension (examples in 0,1 ")
• 𝜅: size of a “good” model
• 𝑛: stream length
Our work:  
• Natural sparse regression problems for which nontrivial 

prediction requires memory 3Ω 𝑑𝜅 ⋅ #
$

for arbitrary 𝑑, 𝜅.

! bits/row

"
rows
i.i.d.
∼ $

Datum !! Update

Datum !"

Datum !#

Datum !$

Update

Update

Finalize

⋮ ⋮

=
𝑚𝑖𝑛𝑖𝑚𝑎𝑙 # 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑒𝑛𝑔𝑡ℎ

𝜅
𝜅 log(1/𝜖)

𝜅

𝜅𝑑

2C

M
em

or
y

Stream length 𝑛

Parity 
[Raz]

Linear regression [Sharan, Sidford, Valiant ‘18, 
Dagan, Kur, Shamir ‘19]

Sparse regression over implicit features 
[Our work]



How Much Space?
Goal: Understand space as a function of…
• 𝑑: data dimension (examples in 0,1 ")
• 𝜅: size of a “good” model
• 𝑛: stream length
Our work:  
• Natural sparse regression problems for which nontrivial 

prediction requires memory Ω 𝑑𝜅 ⋅ #
$

for arbitrary 𝑑, 𝜅.

! bits/row

"
rows
i.i.d.
∼ $

Datum !! Update

Datum !"

Datum !#

Datum !$

Update

Update

Finalize

⋮ ⋮

How “natural”? Examples include
• Multi-class sparse logistic regression

• Binary C
DEF 1

-sparse logistic regression 

over degree-2 polynomial features
Ø Space usage scales with ambient dimension, not model or example size



Machine learning models contain 
information about their training data.
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Today

Ø In natural settings, 
memorization of nearly entire examples is 
necessary for every learning algorithm,
even when many details are irrelevant. 

Ø In natural settings, 
every one-pass learning algorithm requires
large memory because of memorization



Future Work
• Models reflecting complex real world

Ø In our case, “true” model is sparse multiclass logistic 
regression

• Algorithms that provably extract memorized info

• Connections between memorization and 
ØFurther data/memory tradeoffs
ØLimited-access data models
ØPAC-Bayes obstacles

• Does faster optimization “require” more 
memorization? 


