BU CS599 Foundations of Private Data Analysis Spring 2023

Lecture 21: Inference and DP

Jonathan Ullman NEU Adam Smith BU

Inference with DP

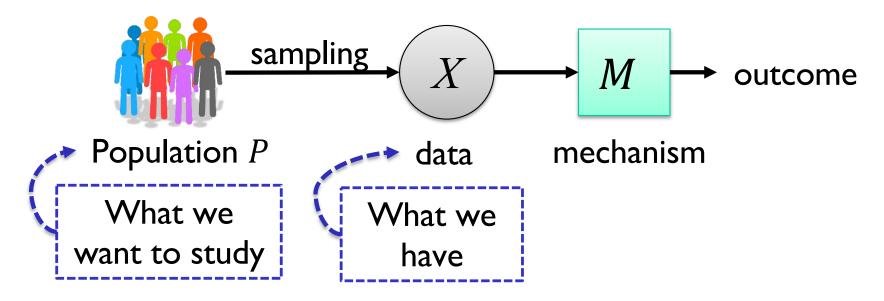
- Inference vs computation
- Confidence intervals
 - Estimating the bias of a coin
- Confidence intervals from complex algorithms
 - > Estimating median from the binary-tree CDF
- Bootstrap-based approaches
- Topics not covered

Inference versus computing a function

		Peoria city, Illinois			
Subject	Estimate	Margin of Error	Percent	Percent Margin of Error	
HOUSEHOLDS BY TYPE					
Total households	47,756	+/-1,640	47,756	(X)	
Family households (families)	27,259	+/-1,641	57.1%	+/-3.2	
With own children of the householder under 18 years	12,567	+/-1,332	26.3%	+/-2.7	
Married-couple family	17,437	+/-1,657	36.5%	1/22	
With own children of the householder under 18 years	7,008	+/-1,155	14.7%		
Male householder, no wife present, family	1,939	+/-634	4.1%		
With own children of the householder under 18 years	1,038	+/-511	2.2%		- 4
Female householder, no husband present, family	7,883	+/-1,205	16.5%		
With own children of the householder under 18 years	4,521	+/-1,038	9.5%		,
Nonfamily households	20,497	+/-1,804	42.9%		
Householder living alone	17,685	+/-1,748	37.0%		
65 years and over	5,917	+/-903	12.4%		- 4
					- 1
Households with one or more people under 18 years	13,799	+/-1,360	28.9%		
Households with one or more people 65 years and over	12,130	+/-935	25.4%	17-2.0	
Average household size	2.40	+/-0.07	(X)	(X)	
Average family size	3.15	+/-0.13	(X)	(X)	

- American Community Survey
 - \triangleright Covers $\approx 1\%$ of the US population per year
 - Includes "ancestry, citizenship, educational attainment, income, language proficiency, migration, disability, employment, and housing characteristics"
- Meant to inform us about the population as a whole
 - > Sample itself is not of interest

Statistical inference



- Goal: Figure out something about P
 - ➤ Good classifier
 - > Test if P satisfies some hypothesis
 - · E.g. smoking and lung cancer are independent
 - \triangleright Estimate for some parameter f(P) of P
 - Example: mean, covariance, regression coefficient
 - Confidence interval: plausible range for the parameter

Two Settings

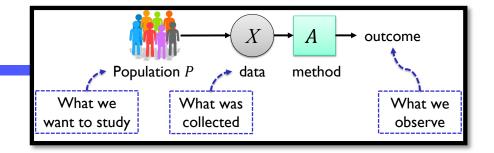
I. Externally specified mechanism

- ➤ Census is using "TopDown"
- > How can social scientists draw inferences?

2. Algorithm design

- > What mechanisms make inference easy?
- > Are they good enough?

Theories of Inference



Bayesian [lots of work]

- \triangleright Posit a prior Q on the data distribution P
- Figure $a = A_{\epsilon}(X)$, compute conditional distribution on f(P) $\Pr_{P \sim Q} (f(P) = \theta | a = A_{\epsilon}(X))$ $X \sim P^{n}$
 - Incorporates all randomness, supports all inference tasks ©
 - Often computationally hard 🕾
 - Limited by prior. Social scientists suspicious 😊

Frequentist [today]

- Example: Find function $CI: a \to [low, high]$ such that $\forall P \in \mathcal{P}: \Pr_{X \sim P^n} \left(f(P) \in CI(A_{\epsilon}(X)) \right) \approx 0.95$
 - Often computationally simpler ©
 - Correctness is often brittle 😊

Today: Two specific problems

Parametric estimation

Estimating a coin's bias (Bernoulli)

$$> B(p)$$
: Output $\begin{cases} 1 & \text{w.p.} & p \\ 0 & \text{w.p.} & 1-p \end{cases}$

 \triangleright Given $X_1, \dots, X_n \sim_{iid} P = B(p)$

Median

$$\succ X_1, \dots, X_n \sim_{iid} P$$
 on [0,1] with CDF F

Want
$$w$$
 such that $F(w) = \frac{1}{2}$
(or $\inf\{w: F(w) \ge \frac{1}{2}\}$)

Bernoulli parameter estimation

- Say $X_1, ..., X_n \sim Bern(p)$ so each $X_i \in \{0,1\}$
- We want a confidence interval for p, that is, an algorithm
 - ► Input: $x_1, ..., x_n$ and parameter $\beta \in (0,1)$
 - \triangleright Output: a, b

Two goals

• Validity/coverage: for all $p \in [0,1]$:

$$\Pr_{\substack{X=(X_1,\ldots,X_n)\sim B(p)\\i,i,d,}} (p \in [a(X),b(X)]) \ge 1-\beta$$

- Size: Want b a as small as possible
 - > E.g. in expectation

Bernoulli parameter estimation

- Say $X_1, \dots, X_n \sim Bern(p)$ so each $X_i \in \{0,1\}$
- Validity/coverage: for all $q \in [0,1]$:

$$\Pr_{\substack{X = (X_1, ..., X_n) \sim B(p) \\ i.i.d.}} (p \in [a(X), b(X)]) \ge 1 - \beta$$

Typical strategy for parametric estimation: Given x,

I. Compute
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Let
$$a(\boldsymbol{x}) = \min \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} > \overline{x}) \ge \frac{\beta}{2} \right\}$$

$$b(\boldsymbol{x}) = \max \left\{ q: \Pr_{\substack{I.i.d. \\ Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} < \overline{x}) \ge \frac{\beta}{2} \right\}$$

In practice, often use upper bounds on tail probabilities

Looser bounds lead to larger intervals

Validity

Proof:

- Two ways to be invalid: either p < a(X) or p > b(X)
- Look at $\Pr_{\vec{X} \sim_{iid} B(p)} (p < a(X))$
 - \triangleright Recall $a(\vec{x}) =$

QED

Same proof works if we use upper bound on tails

E.g. Chernoff bounds, or CLT:
$$\overline{X} \approx Z$$
 where $Z \sim N\left(p, \frac{p(1-p)}{n}\right)$. Ok for $n \gg \frac{1}{p(1-p)}$

Validity (with proof filled in)

Proof:

- Two ways to be invalid: either p < a(X) or p > b(X)
- Look at $\Pr_{\vec{X} \sim_{iid} B(p)} (p < a(X))$

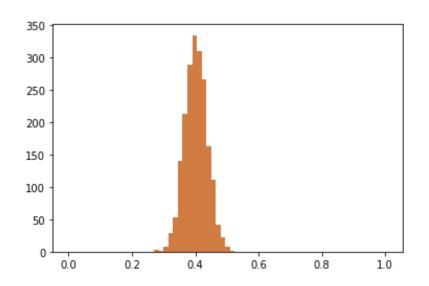
 - - By definition!
- Similarly, probability that p > b(X) is at most $\frac{\beta}{2}$. QED

Same proof works if we use upper bound on tails

E.g. Chernoff bounds, or CLT: $\bar{X} \approx Z$ where $Z \sim N\left(p, \frac{p(1-p)}{n}\right)$. Ok for $n \gg \frac{1}{p(1-p)}$

General strategy

• Sampling distribution of a statistic g(X) for distribution P is the distribution you observe in the sample.



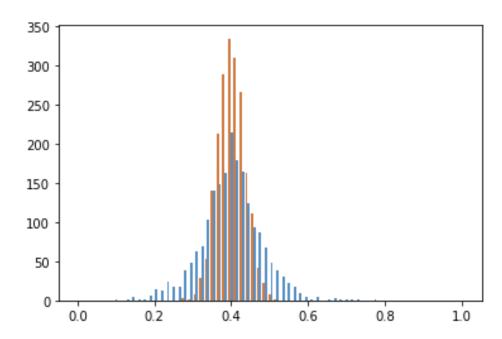
Sampling distribution of \bar{X} where $X \sim_{(iid)} B(0.4)$ and n = 200

 General approach: look how sampling distribution might have given rise to observed value

DP Confidence Intervals

• Given $\mathbf{x} = (x_1, \dots, x_n) \in \{0,1\}^n$, Run existing DP algorithm $M(\mathbf{x})$ to approximate \bar{x}

Example:
$$M(x) = \bar{x} + Z$$
 where $Z \sim Lap\left(\frac{1}{\epsilon n}\right)$



Sampling distributions of \bar{X} and M(X) where $X \sim_{(iid)} B(0.4)$ and n=200 and $\epsilon=0.1$

• How should we compute a confidence interval for p?

DP confidence intervals

Approach #1:

Figure Given
$$m = M(x) = \bar{x} + Z$$
 where $Z \sim Lap\left(\frac{1}{\epsilon n}\right)$

Let
$$a(m) = \min \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} \ge m) \ge \frac{\beta}{2} \right\}$$
$$b(m) = \max \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} \le m) \ge \frac{\beta}{2} \right\}$$

- Multiple choice: This approach produces
- a) Valid intervals that are wider than they need to be
- b) Valid intervals that are narrower than they need to be
- c) Invalid intervals because they are too wide
- d) Invalid intervals because they are too narrow

DP confidence intervals

- Approach #2:
 - Figure Given $m = M(x) = \bar{x} + Z$ where $Z \sim Lap\left(\frac{1}{\epsilon n}\right)$
 - Let $a(m) = \min \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (M(\mathbf{Y}) \ge m) \ge \frac{\beta}{2} \right\}$ $b(m) = \max \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (M(\mathbf{Y}) \le m) \ge \frac{\beta}{2} \right\}$
- This approach is correct, but not obviously the best
 - > In fact, adding integer version of Laplace is slightly better [GRS'08]
- Approximating $\Pr_{\substack{Y_1,...,Y_n \sim B(q) \\ i.i.d.}} (M(Y) \ge m)$ can be tricky
 - > Loose overestimates lead to wide intervals
 - > Loose underestimates yield invalid intervals
 - General approach: sampling

Asymptotics

• Central Limit Theorem: when p fixed and $n \to \infty$,

$$\frac{M(X) - p}{\sqrt{p(1-p)n}} \to_D N(0,1)$$

just like \bar{X} .

- \triangleright So M(X) is "as good as" \bar{X} for statistical purposes as $n \to \infty$
- But when we do inference, we have a finite sample
 - > We need to adjust for added noise
 - \triangleright For large n, the adjustment is small
- We can quantify the cost in terms of ...
 - \triangleright Interval width of private v. nonprivate methods (for same n)
 - Increase in sample size needed (for same expected width)

Comparing sample sizes

- Bernoulli: For given confidence, intervals have width
 - Nonprivate with n samples: roughly $2 z_{1-\beta/2} \cdot \frac{1}{\sqrt{p(1-p)n}}$ where $z_{1-\beta/2}$ is the $1-\beta/2$ quantile of N(0,1)
 - ightharpoonup Private with n' samples: roughly $2 z_{1-\beta/2} \cdot \sqrt{\frac{1}{p(1-p)n'} + \frac{\sqrt{2}}{(\epsilon n')^2}}$
 - (This assumes Laplace behaves roughly like Normal)
 - \triangleright Solving for n' to get the same width α , for constant p:

$$n' = n + \Theta\left(\frac{1}{\epsilon^2}\right)$$

- (Exercise [⊕])
- For most models, we at best get statements of the form $n' = \Theta(n_{nonprivate} + f(\epsilon, \alpha))$
 - Example: For Gaussian mean with known covariance

$$n' = \widetilde{\Theta}\left(\frac{d}{\alpha^2} + \frac{d}{\epsilon\alpha}\right)$$

- > See Dwork, Tankala, Zhang (STOC 2025) for a recent example in the context of high-dimensional regression
- Open question for many models!

General points

 Adjustments above were possible only because we knew an exact description of M

```
Needed to compute \Pr_{Y_1,...,Y_n \sim B(q)}(M(Y) \ge m)
```

- Until 2010, Census methods for adding distortion were confidential
 - Users had to make inferences by taking estimates at face value
- Move to publicly described methods has caused controversy
 - > Many did not understand distortion was added at all
 - > New distortion is often larger than previously added

Inference with DP

- Inference vs computation
- Confidence intervals
 - Estimating the bias of a coin
- Confidence intervals from complex algorithms
 - > Estimating median from the binary-tree CDF
- Bootstrap-based approaches
- Topics not covered

Median

- $X_1, \ldots, X_n \sim_{iid} P$ on [0,1] with CDF F
- Median: w such that $F(w) = \frac{1}{2}$ (or $\inf\{w: F(w) \ge \frac{1}{2}\}$)
- We've seen DP algorithms for median

Exp. Mech.
$$\Pr(Y = y) \propto \exp\left(-\left|rank_x(y) - \frac{n}{2}\right|\right)$$

- > CDF tree estimator
 - Extract an estimate for median by looking where the estimated CDF crosses above $\frac{1}{2}$
- > (also MWEM)
- What problems will we get?

Nonprivate CI's for median

- Let's first solve the problem without DP...
 - \triangleright Let F be the CDF of P and m^* be its true median
 - \triangleright Let F_x be the CDF of the sample
- Find two quantiles q_-, q_+ that contain the median with probability 1β .

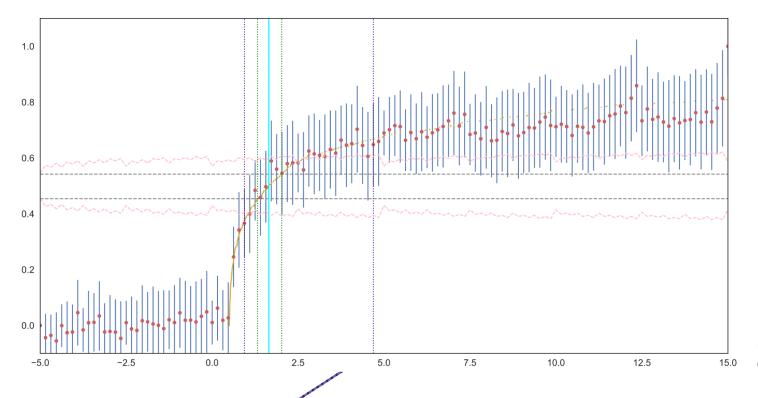
$$q_{-} = \sup \left\{ q: \Pr_{X \sim_{iid} P} (F_X(m^*) \le q) \le \frac{\beta}{2} \right\}$$
$$= \sup \left\{ q: \Pr_{Y \sim_{Bin}(n, \frac{1}{2})} (\overline{Y} \le q) \le \frac{\beta}{2} \right\}$$

- $\rightarrow q_+$ is similar
- Given x with CDF F_x , return

$$a(x) = F_x^{-1}(q_-)$$
 and $b(x) = F_x^{-1}(q_+)$

Using the CDF estimator

- Approach I: For each w, find a confidence interval for w's quantile in the sample
 - \triangleright Possible because we understand Gaussian noise for each x
 - $\triangleright a = \text{smallest value whose CI includes } q_-$
- Approach 2: For each w, find a confidence interval for w's quantile in the distribution
 - \triangleright Possible because we understand Gaussian noise for each x and estimating the CDF at w can be viewed as Bernoulli estimation
 - $\triangleright a = \text{smallest value whose CI includes } 1/2$

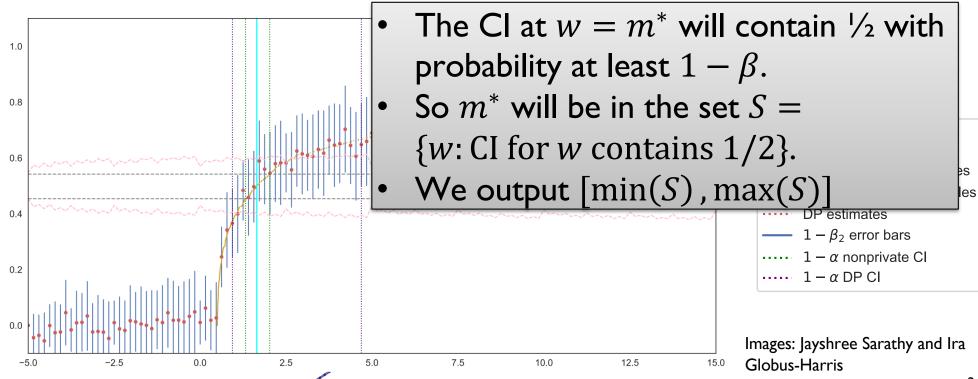


Empirical CDF
Population median $--- 1 - \alpha \text{ nonprivate quantiles}$ $--- 1 - \beta_1 \text{ nonprivate quantiles}$ $--- 1 - \beta_2 \text{ error bars}$ $--- 1 - \beta_2 \text{ error bars}$ $--- 1 - \alpha \text{ nonprivate CI}$ $--- 1 - \alpha \text{ DP CI}$

Images: Jayshree Sarathy and Ira Globus-Harris

Using the CDF estimator

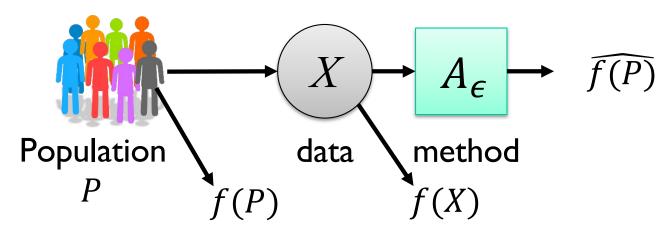
- Approach I: For each w, find a confidence interval for w's quantile in the sample
 - \triangleright Possible because we understand Gaussian noise for each x
 - $\triangleright a = \text{smallest value whose CI includes } q_-$
- Approach 2: For each w, find a confidence interval for w's quantile in the distribution
 - \triangleright Possible because we understand Gaussian noise for each x and estimating the CDF at w can be viewed as Bernoulli estimation
 - $\Rightarrow a = \text{smallest value whose Cl includes } 1/2$



Inference with DP

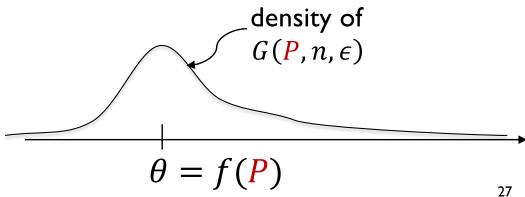
- Inference vs computation
- Confidence intervals
 - Estimating the bias of a coin
- Confidence intervals from complex algorithms
 - Estimating median from the binary-tree CDF
- Bootstrap-based approaches
- Topics not covered

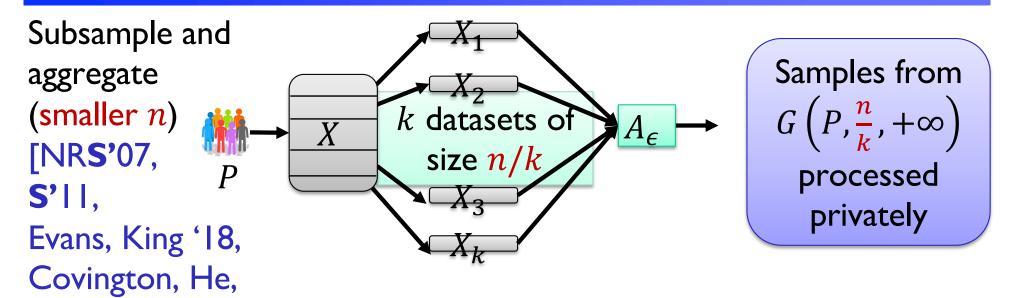
Sampling Distribution

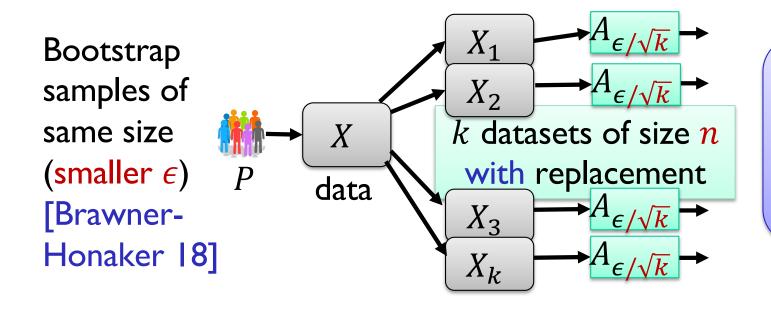


- Goal: Cl for f(P) from $A_{\epsilon}(X)$
- Intermediate goal: understand sampling distribution $G(P, n, \epsilon)$

of
$$A_{\epsilon}(X)$$

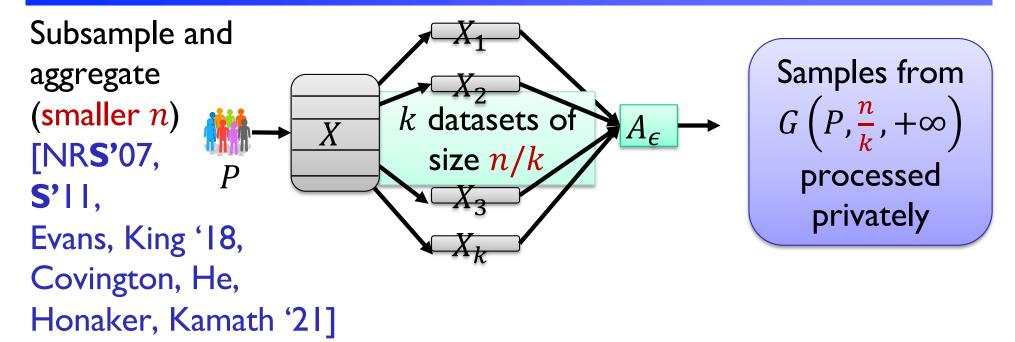






Honaker, Kamath '21]

Samples from $G\left(P_X, n, \frac{\epsilon}{\sqrt{k}}\right)$ processed nonprivately

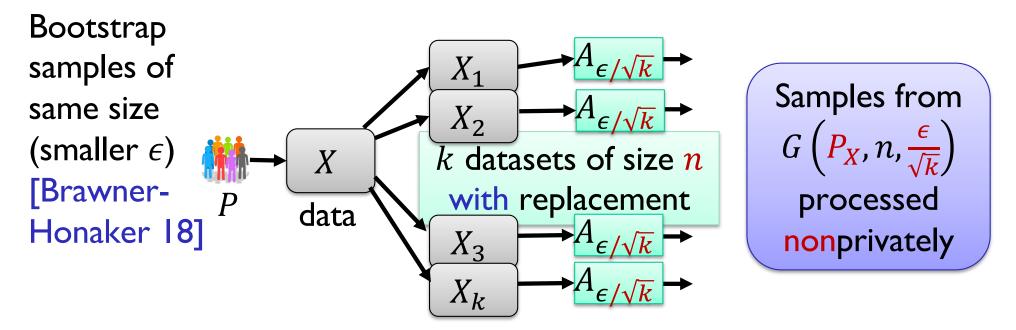


- Idea:
 - \triangleright Assume a specific form for $G\left(P, \frac{n}{k}, +\infty\right)$ [e.g. Gaussian, χ^2]
 - Focus on estimation for distributions of that form
- Simple and sound ©
- Highly specific and data-hungry

Booststrap theory suggests

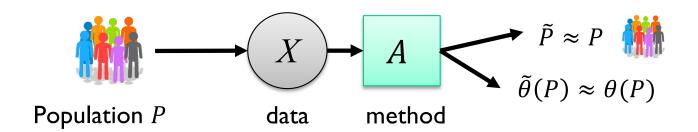
$$G\left(\frac{P_X}{N}, n, \frac{\epsilon}{\sqrt{k}}\right) \approx G\left(\frac{P}{N}, n, \frac{\epsilon}{\sqrt{k}}\right)$$

• If noise is additive, then infer mean and variance of $G(P, n, \epsilon)$

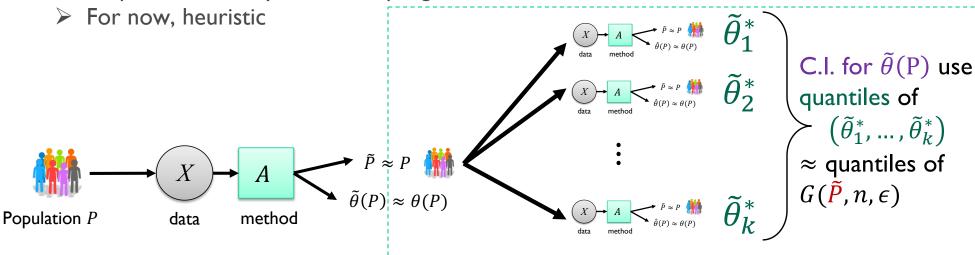


Model-based Bootstrap

"Model-based" Bootstrap



- What do we do in higher-dimensional settings?
- Many differentially private algorithms implicitly model the population
 - > CDF estimators, synthetic data generators, ...
- Heuristic: Use estimated model as basis for sampling distribution [Ferrando, Wang, Sheldon '21, Neunhoeffer, Sheldon, S. '22]
 - ► If $\tilde{P} \approx P$, then maybe $G(\tilde{P}, n, \epsilon) \approx G(P, n, \epsilon)$
 - > Requires continuity of the sampling distribution



Example: Nonparametric Medians

- Two univariate distributions
 - Mixture of two normals
 - \triangleright ADULT age data set (P= empirical distribution)

So far...

- Accurate coverage
 - > But treating output naively undercovers
- Narrower intervals than exact, conservative method [Drechsler, Globus-Harris, McMillan, Sarathy, S., 22]

Sampling distributions, n=1000

Bimodal data

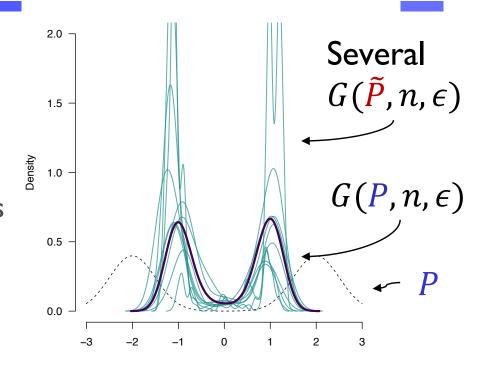
0.0

- Sampling distributions $G(\widetilde{P},n,\epsilon)$ highly skewed
- Estimates $ilde{ heta}_i^*$ are
 - > Highly mean-biased in weird ways
 - Median-unbiased

20

Several $G(\tilde{P},n,\epsilon)$ $G(P,n,\epsilon)$

60



$G(\tilde{P}, n, \epsilon)$ ADULT age data

Works well

Inference with DP

- Inference vs computation
- Confidence intervals
 - Estimating the bias of a coin
- Confidence intervals from complex algorithms
 - > Estimating median from the binary-tree CDF
- Bootstrap-based approaches
- Topics not covered

Topics we did not cover

- Hypothesis tests and p-values
 - > Basis for peer-review standards in many sciences
- Bayesian statistical approaches
- In "traditional" ML
 - > Calibration of class probability estimates
 - Conformal validity of prediction sets (set that contains correct class with high probability)
- Causal inference
- Data re-use
- Fairness to small subpopulations
- •