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Inference with DP

* Inference vs computation

* Confidence intervals

» Estimating the bias of a coin

* Confidence intervals from complex algorithms
» Estimating median from the binary-tree CDF

* Bootstrap-based approaches

* Topics not covered



Inference versus computing a function

Peoria city, lllinois

Subject Margin of Error | Percent  Percent Margin of Error

HOUSEHOLDS BY TYPE

Total households 47,756 +/-1,640 | 47756 (X)
Family households (families) 27,259 +/-1.641 57.1% +-3.2
With own children of the householder under 13 years 12,567 +/-1,332 26.3% +-2.7
Married-couple family 17,437 +/-1657 | 36.5%
With own children of the householder under 13 years 7,008 +/-1,155 147%
Male householder, no wife present, family 1,939 +/-634 41%
With own children of the householder under 13 years 1,038 +/-511 2.2%
Female householder, no husband present, family 7,883 +/-1,205 16.5%
With own children of the householder under 18 years 4521 +/-1,038 9.5%
Nonfamily households 20,497 +/-1.804 | 429%
Householder living alone 17,685 +/-1,748 37.0%
65 years and over 5917 +/-903 12.4%
Households with one or more people under 138 years 13,799 +/-1,360 28.9%
Households with one or more people 65 years and over 12,130 +/-935 25.4%
Average household size 240 +/-0.07 X) (X)
Average family size 3.15 +/-0.13 X) X)

* American Community Survey
» Covers = 1% of the US population per year

» Includes “ancestry, citizenship, educational attainment, income,
language proficiency, migration, disability, employment, and
housing characteristics”

* Meant to inform us about the population as a whole

» Sample itself is not of interest



Statistical inference

M — outcome

* Goal: Figure out something about P
» Good classifier
» Test if P satisfies some hypothesis

* E.g. smoking and lung cancer are independent

» Estimate for some parameter f(P) of P
* Example: mean, covariance, regression coefficient

* Confidence interval: plausible range for the parameter



Two Settings

|. Externally specified mechanism
» Census is using “TopDown”

> How can social scientists draw inferences?

2. Algorithm design
» What mechanisms make inference easy?
» Are they good enough?
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Theories of Inference

Rad Population P _» data method \
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* Bayesian [lots of work]
» Posit a prior Q on the data distribution P
» Given a = A.(X), compute conditional distribution on f(P)

Pr (F(P)=bla = 4.())

X~pn
* Incorporates all randomness, supports all inference tasks ©

« Often computationally hard ®
* Limited by prior. Social scientists suspicious ®

* Frequentist [today]
» Example: Find function CI: a — [low, high] such that
vPeP:  Pr (f(P)€ CI(4(0))~ 095

« Often computationally simpler ©
e Correctness is often brittle ®



Today: Two specific problems

Parametric

* Estimating a coin’s bias (Bernoulli) estimation

O

. 1 w.p. P 5
» B(p): Output {0 w.p. 1—pe

> Given X4, ..., X;, ~iig P = B(p)

* Median
>X1, ,Xn ~iid P on [0,1] with CDF F

» Want w such that F(w) = %

(or inf {W: F(w) = %})



Bernoulli parameter estimation

° Say X, ...,X,, ~ Bern(p) so each X; € {0,1}

°* We want a confidence interval for p,
that is, an algorithm
» Input: x4, ..., X,, and parameter € (0,1)
» Output: a, b
Two goals

* Validity/coverage: for all p € [0,1]:

e B Lo (€ [a0, b)) = 15

l.l.d.

* Size: Want b — a as small as possible
» E.g. in expectation



Bernoulli parameter estimation
° Say Xy, ...,X, ~ Bern(p) so each X; € {0,1}
* Validity/coverage: for all g € [0,1]:

(r € [aX),b(X)]) =21-8

Pr
X=(X1,---+Xn)~B(p)
i.i.d.

Typical strategy for parametric estimation: Given x,

1
| Compute X = -1, x;

| ﬁ
— >
2. Leta(x) = min)q: v Yn~B(q)(Y > x) > »
b(x) B T<in) b
x) = max q.Y1 ...YnI;B(q) X) =5
i.i.d.

In practice, often use upper bounds on tail probabilities
* Looser bounds lead to larger intervals



Validity
Proof:
* Two ways to be invalid: either p < a(X) or p > b(X)

°* Lookat Pr (p<a(X)
X~iid B(p)( )

> Recall a(x) =

QED

Same proof works if we use upper bound on tails

» E.g. Chernoff bounds, or )
CLT: X =~ Z whereZ ~ N (p,p( _p)). Ok for n >

n

1
p(1-p)




Validity (with proof filled in)

Proof:
* Two ways to be invalid: either p < a(X) or p > b(X)

* Llookat Pr (p<a(X)
X’”ud B(p)( )

» Recall a(xX) = min {q: (Y > X) = [zi}

E
> If p < a(X) then - Yn~B( (Y > i) <
i.i.d.

* By definition!

* Similarly, probability that p > b(X) is at most g QED

Same proof works if we use upper bound on tails
» E.g. Chernoff bounds, or
CLT: X =~ ZwhereZ ~ N (p,p(l_p)). Ok for n >

n

1
p(1-p)




General strategy

* Sampling distribution of a statistic g(X) for
distribution P is the distribution you observe in the

sample.
350 Sampling distribution
20 of X where
:: XN(lld)B(O4) and
n = 200

150 -

100 -

50 B

o T T T T T
0.0 0.2 0.4 0.6 0.8 10

* General approach: look how sampling distribution
might have given rise to observed value



DP Confidence Intervals

* Given x = (x¢,...,x,,) € {0,1}",
Run existing DP algorithm M (x) to approximate X
» Example: M(x) = X + Z where Z ~ Lap (i)

eEn

350

z: Sampling distributions
of X and M(X)
where X’V(ud)B(04)

200 A

150 A

and n = 200
I“ and € = 0.1
“lllh,

100 -

|l
01— . 411“”
0.2 :

0.0 0.8 10

* How should we compute a confidence interval for p?



DP confidence intervals

* Approach #l:
» Givenm = M(x) = X + Z where Z ~ Lap Ln

€
. = p
= . > >
> Let a(m) = min q.Y1 EEB(Q)(Y >m) = >
i.i.d. B
= . < >
b(m) = max)q: Yl,...,l;,)ll:/B(q)(Y <m)=> >
i.i.d.

* Multiple choice: This approach produces
a) Valid intervals that are wider than they need to be

b) Valid intervals that are narrower than they need to
be

c) Invalid intervals because they are too wide //\
d) Invalid intervals because they are too narrow [T




DP confidence intervals
° Approach #2:
» Givenm = M(x) = x + Z where Z ~ Lap (i)

(M(Y) = m) > }

Y1, ~B( )

> Let a(m) = min {q
lld

Y4, ~B()
lld

* This approach is correct, but not obviously the best
> In fact, adding integer version of Laplace is slightly better [GRS’08]

b(m) = max {q (M(Y) <m) > }

* Approximating . Y o )(M(Y) > m) can be tricky
1rmIn™

l.i.d.
> Loose overestimates lead to wide intervals

» Loose underestimates yield invalid intervals
» General approach: sampling



Asymptotics

* Central Limit Theorem: when p fixed and n — oo,
M(X) —p

Jr(1—p)n

D N(O)l)

just like X.
> So M(X) is “as good as” X for statistical purposes as n — o
* But when we do inference, we have a finite sample
» We need to adjust for added noise
» For large n, the adjustment is small
* We can quantify the cost in terms of ...

> Interval width of private v. nonprivate methods (for same n)
> Increase in sample size needed (for same expected width)



Comparing sample sizes

Bernoulli: For given confidence, intervals have width
1

, pQa-p)n
where z,_z/, is the 1 — /2 quantile of N(0,1)

> Private with n’ samples: roughly 2z, _z/, - \/ - V2

» Nonprivate with n samples: roughly 2 z;_gz/, -

p(1-p)n’ = (en’)?
* (This assumes Laplace behaves roughly like Normal)

» Solving for n’ to get the same width ¢, for constant p:
n=n+0 (—2)
€
 (Exercise ©)

For most models, we at best get statements of the form

I —
n = @(nnonprivate + f (E: C())
» Example: For Gaussian mean with known covariance

n' = @( + )
a?  ea
» See Dwork, Tankala, Zhang (STOC 2025) for a recent example in the

context of high-dimensional regression
» Open question for many models!




General points

* Adjustments above were possible only because we
knew an exact description of M

>
> Needed to compute v Yn~B )(M(Y) m)
i.i.d.
* Until 2010, Census methods for adding distortion were
confidential

» Users had to make inferences by taking estimates at face
value

* Move to publicly described methods has caused
controversy

» Many did not understand distortion was added at all

» New distortion is often larger than previously added



Inference with DP

Inference vs computation

Confidence intervals

» Estimating the bias of a coin

Confidence intervals from complex algorithms
» Estimating median from the binary-tree CDF

Bootstrap-based approaches

Topics not covered
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Median
® Xl, ,Xn ~iid P on [0,1] with CDF F

* Median: w such that F(w) = %

(or inf {W: F(w) = %})

* We've seen DP algorithms for median

> Exp. Mech. Pr(Y = y) < exp (— \mnkx(y) - ED

» CDF tree estimator

* Extract an estimate for median by looking where the estimated CDF
crosses above /2

> (also MWEM)
* What problems will we get?

21



Nonprivate CI’s for median

* Let’s first solve the problem without DP...
» Let F be the CDF of P and m™ be its true median
» Let F, be the CDF of the sample

* Find two quantiles g_, g, that contain the
median with probability 1 — £.

\ p
q- = sup {q: XfrdP(Fx(m )<q) < 5}

= sup {q: Pr (Y<q)< 'B}

Y~Bin (n%) 2

> Q. is similar
* Given x with CDF E,, return
a(x) = F;(q-) and
b(x) = Fy*(q4)

22



Using the CDF estimator

* Approach |: For each w, find a confidence interval for w’s quantile in the
sample

> Possible because we understand Gaussian noise for each x
» a = smallest value whose Cl includes g_

* Approach 2: For each w, find a confidence interval for w’s quantile in the
distribution

» Possible because we understand Gaussian noise for each x and
estimating the CDF at w can be viewed as Bernoulli estimation

» a = smallest value whose Cl includes 1/2
HH M Empirical CDF
|,|. | Population median

LK 1 S B A O === 1 — a nonprivate quantiles

1.0

ol L O A . 1 — B1 nonprivate quantiles
T S SN S NN NSNS, IR P DP estimates

—— 1 — 3, error bars

----- 1 — a nonprivate Cl

------ 1—-aDPCI

Images: Jayshree Sarathy and Ira
10.0 12.5 15.0 GIObUS'HarriS
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Using the CDF estimator

Approach |: For each w, find a confidence interval for w’s quantile in the
sample

» Possible because we understand Gaussian noise for each x

» a = smallest value whose Cl includes g_

Approach 2: For each w, find a confidence interval for w’s quantile in the
distribution

> Possible because we understand Gaussian noise for each x and
estimating the CDF at w can be viewed as Bernoulli estimation

» a = smallest value whose Cl includes 1/2

1.0

|* The Cl at w = m™ will contain 2 with
| probability at least 1 — .

So m”* will be in the set S =

{w: CI for w contains 1/2}.

We output [min(S), max(S)] s

""" DP estimates
—— 1 — 3, error bars

----- 1 — a nonprivate ClI
----- 1-aDPCI

Images: Jayshree Sarathy and Ira
7.5 10.0 12.5 15.0 GIObUS-HarriS
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Inference with DP

Inference vs computation

Confidence intervals

» Estimating the bias of a coin

Confidence intervals from complex algorithms
» Estimating median from the-binary-tree CDF

Bootstrap-based approaches

Topics not covered
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Direct Estimation of Sampling
Distribution

26



Samplin g Distribution

A — f(P)
Populatlon data \ method

f(P) f(X)
* Goal: Cl for f(P) from A.(X)

* Intermediate goal: understand sampling distribution
G(P,n,e)

of AE (X) de(nsity o;
G(P,n, e

6 = f(P)

27



Direct Estimation of Sampling Distribution

Subsample and

aggregate — /Samples from\
(smaller n) fi—x k datasets o — | G (P,%, +oo)
[SITIIRIS 07 P \5|ze e processed

’ ivatel
Evans, King ‘I8, \ privately )
Covington, He,
Honaker, Kamath 21]

/'AG/\/E >

Bootstrap ) N /Samples e
samples of e/\k .
same size i k datasets of size n G (P x ﬁ)
(smallere) p with replacement processed

[Brawner-
Honaker |8]

— A /i \nonprivately )
_'Ae/\/F —
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Direct Estimation of Sampling Distribution

Subsample and
aggregate — \ /Samples from\

(smaller n) fi—x k datasets of W4 — | G (P,%, +oo)
P

[Sl?llRls 07, \size n/k processed
Evans, King ‘I8, < B >

Covington, He,
Honaker, Kamath 21]

* |dea:

» Assume a specific form for G (P, %, -I-OO) [e.s. Gaussian, y*]

» Focus on estimation for distributions of that form

* Simple and sound ©
* Highly specific and data-hungry ®

29



Direct Estimation of Sampling Distribution

* Booststrap theory suggests
P Yy Sugsg

€ €
G (P ,n,—) ~ @ (P,n,—)
Pk vk
* |f noise is additive, then infer mean and variance of
G(P,n,e)

Bootstrap

samples of — A s ™\
same size —A, Samples frgm
(smaller €) ﬁ'ﬂ‘ k datasets of size n G (P x ﬁ)
[Brawner- with replacement processed
Honaker |8]

— A /i \nonprivately )
_'Ae/\/F —




Model-based Bootstrap



“Model-based” Bootstrap

W — a0 W

(P) = 6(P)
Population P data method

What do we do in higher-dimensional settings?

Many differentially private algorithms implicitly model the population
» CDF estimators, synthetic data generators, ...

Heuristic: Use estimated model as basis for sampling distribution
[Ferrando, Wang, Sheldon 21, Neunhoeffer, Sheldon, S. 22]
> If P = P, then maybe G(I5 n, 6) G(P,n,e)
» Requires continuity of the sampllng distribution
» For now, heuristic L ~*\

@ S :
. o C.I. for 8(P) use
@”K@ " 9 * quantiles of :
. > (65, ...,0%)
'Mr% < : > 4 \/Av P~p i : ~ quantiles of
6(P)~ 0(P) ow Fx | GPm,E)
Population P data method @"(P)zgw H k /

________________________________________________________________________________



Example: Nonparametric Medians

* Two univariate distributions
» Mixture of two normals
» ADULT age data set (P= empirical distribution)

So far...

* Accurate coverage

» But treating output naively undercovers

* Narrower intervals than exact, conservative method
[Drechsler, Globus-Harris, McMillan, Sarathy, S., 22]
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Sampling distributions, n=1000

Bimodal data Several

* Sampling distributions | G(P,n, €)
G(P, n, 6) highly skewed | | o

* Estimates 8 are V
» Highly mean-biased in weird ways O | GPne)
» Median-unbiased 00 - i /

. | ‘ «— P

0.8 —

Several

G(P,n,e) ADULT age data

0.6 —

enisty

* Works well

0.2 —

00 4 oo

0 20 40 60 80 34



Inference with DP

Inference vs computation

Confidence intervals

» Estimating the bias of a coin

Confidence intervals from complex algorithms
» Estimating median from the binary-tree CDF

Bootstrap-based approaches

Topics not covered
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Topics we did not cover

* Hypothesis tests and p-values

> Basis for peer-review standards in many sciences
* Bayesian statistical approaches
* In “traditional” ML

» Calibration of class probability estimates

» Conformal validity of prediction sets (set that contains
correct class with high probability)

* Causal inference
* Data re-use

* Fairness to small subpopulations
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