Privacy in ML and Statistics

Lecture 4: DP Fundamentals I

How do we formulate "privacy" for statistical data?

- Question dates back to 1960's
- Approaches
 - Formulate suite of attack algorithms, look at mechanisms that empirically resist those attacks
 - E.g. k-anonymity
 - Many other approaches
 - Formulate general criteria
 - Prove that algorithms which satisfy the criteria resist all attacks in a class

K-anonymity

- Input is a table
- Output is table of same dimensions in which entries have been generalized
- Generalization:

 \succ Replace a single value with a set of possible values, e.g.

- 2 \rightarrow [1,3]
- Male \rightarrow {Male, Female}
- "adam" → "a*****"
- Table is k-anonymous if every row identical to at least k – 1 others
 - ➤ (Example is 4-anonymous)

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	\geq 40	*	Heart Disease
7	130**	\geq 40	*	Viral Infection
8	130**	\geq 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Why (not) k-anonymity?

Appears to resist linkage attacks

> Hard to identify a record uniquely

> Hopefully, hard to link to other information sources

• What can go wrong?

> Everyone in their 30's has cancer

Alice does not have a broken leg

▶...

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	\geq 40	*	Heart Disease
7	130**	\geq 40	*	Viral Infection
8	130**	\geq 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Composition

- Suppose we make two releases from overlapping data sets
- Say Alice is
 - ➢ Is 28 years old
 - Lives in 13012
 - And her record is on both data sets

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	\geq 40	*	Cancer
6	130**	>40	*	Heart Disease
7	130**	- 40	*	Viral Infection
8	130**	\ge 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer
			(a)	
	No	on-Sens	sitive	Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<35	*	AIDS
2 3	130**	<35	*	Tuberculosis
3	130**	<35	*	Flu
4	130**	<35	*	Tuberculosis
5	130**	<35	*	Cancer
6	130**	<35	*	Cancer
7	130**	\geq 35	*	Cancer
	100**	>35	*	Cancer
8	130**			ounoon
9	130**	\ge 35	*	Cancer
			*	
9	130**	\ge 35		Cancer

(b)

Say Adi is 58 and their record is in both data sets. What conditions can they have?

"Form" vs "content" in definitions

One problem with k-anonymity is that

 \succ it specifies a set of acceptable outputs,

> does not restrict process (algorithm) that produces output

This leads to more opportunities for leakage

E.g., If I know that algorithm uses a minimal generalization, I learn that group 3 has someone with age 30, someone with age 39

 Meaningful definitions must consider the **algorithm**.

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	\geq 40	*	Heart Disease
7	130**	\geq 40	*	Viral Infection
8	130**	\geq 40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Differential privacy

Differential privacy (c. 2006)

Rigorous guarantees against arbitrary external information

 \triangleright In particular: resists known attacks

Burgeoning field of research

Algorithms

Crypto, security

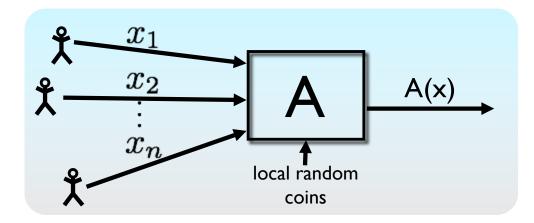
Statistics. learning

Game theory, economics

Databases, programming languages

Law, policy

Differential Privacy



• Data set $x = (x_1, ..., x_n) \in \mathcal{U}^n$

 \succ Domain $\mathcal U$ can be numbers, categories, tax forms

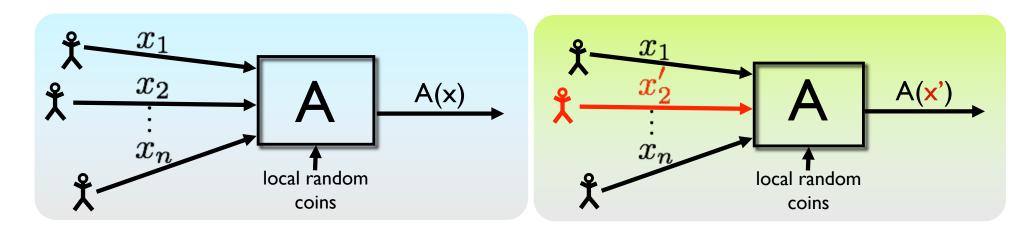
 \succ Think of x as **fixed** (not random)

• A = randomized procedure

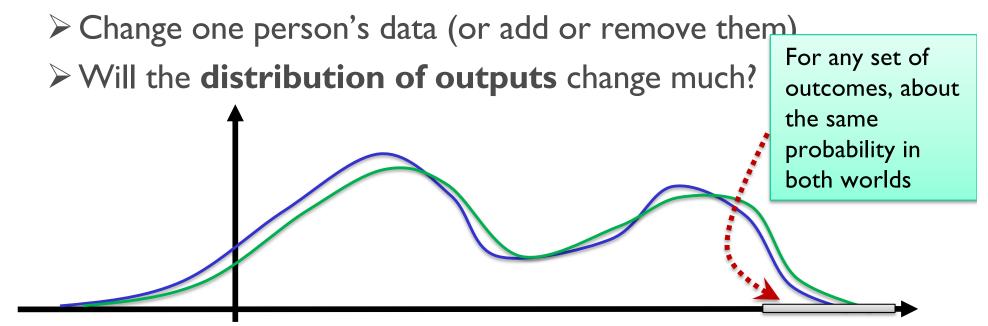
> A(x) is a random variable

> Randomness might come from adding noise, resampling, etc.

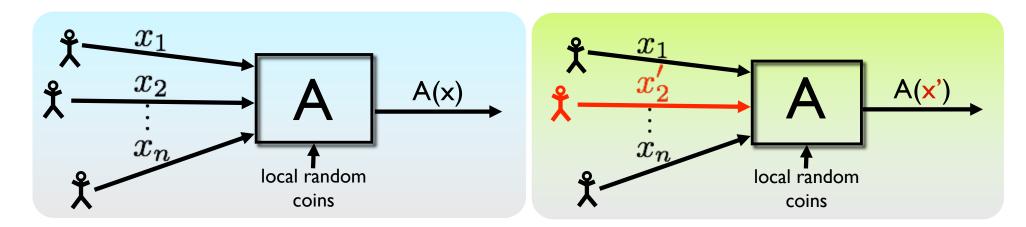
Differential Privacy



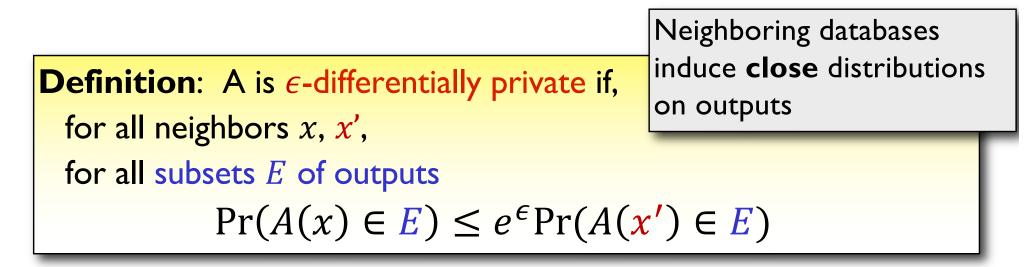
A thought experiment



Differential Privacy



x' is a neighbor of x if they differ in one data point



Differential Privacy

- This is a condition on the algorithm
- What is ϵ ?

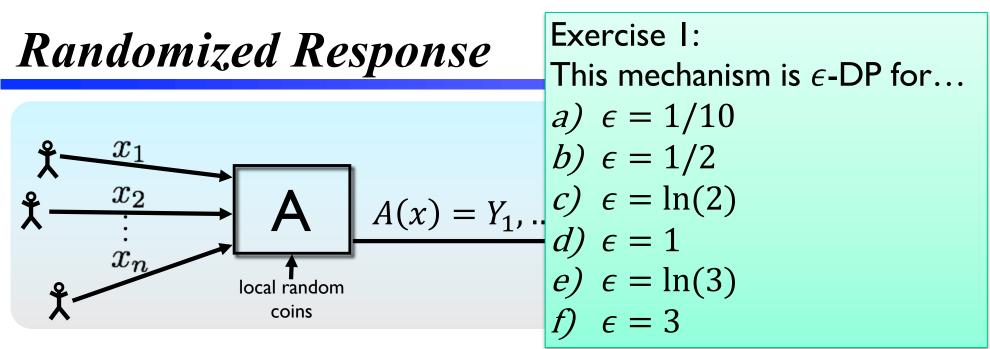
Measure of information leakage

• Exact metric matters

Small, but not too small (think
$$\frac{1}{10}$$
, not $\frac{1}{2^{80}}$)

Definition: A is ϵ -differentially private if, for all neighbors x, x', for all subsets E of outputs $Pr(A(x) \in E) \leq e^{\epsilon} Pr(A(x') \in E)$

Neighboring databases



 Say we want to release the proportion of diabetics in a data set

Each person's data is I bit: $x_i = 0$ or $x_i = 1$

• Randomized response: each individual rolls a die

 \succ I, 2, 3 or 4: Report true value x_i

> 5 or 6: Report opposite value $\overline{x_i}$

- Output is list of reported values Y_1, \ldots, Y_n
 - \succ Can estimate sum of x_i 's that are 1 when n is large

> Lecture I exercise: estimator with error $O(\sqrt{n})$

Two equivalent versions

Neighboring databases induce **close** distributions on outputs

Definition: A is ϵ -differentially private if,

for all neighbors x, x',

for all particular outputs y

$$Pr(A(x) = y) \le e^{\epsilon} Pr(A(x') = y)$$

Definition: A is ϵ -differentially private if,

for all neighbors x, x',

for all subsets E of outputs

$$Pr(A(x) \in E) \le e^{\epsilon} Pr(A(x') \in E)$$

• Proof of equivalence (exercise): $(2) \Rightarrow (1)$: Apply the definition with $E = \{a\}$. $(1) \Rightarrow (2)$: Use $Pr(A(x) \in E) = \sum_{a \in S} Pr(A(x) = y)$.

RR is ln(2)-DP

What statement do we have to prove?

- Fix any data set $\vec{x} \in \{0,1\}^n$, and any neighboring data set \vec{x}'
 - \succ Let *i* be the position where $x_i \neq x'_i$
 - \succ (Recall $x_j = x'_j$ for all $j \neq i$)
- Fix an output $\vec{a} \in \{0,1\}^n$

$$\Pr(A(\vec{x}) = \vec{a}) = \left(\frac{2}{3}\right)^{\#\{j:x_j = a_j\}} \left(\frac{1}{3}\right)^{\#\{j:x_j \neq a_j\}}$$

(because decisions made independently)

• When we change one output, one term in the product changes (from $\frac{2}{3}$ to $\frac{1}{3}$ or vice versa)

• So
$$\frac{\Pr(A(\vec{x})=\vec{a})}{\Pr(A(\vec{x}')=\vec{a})} \in \left\{\frac{1}{2}, 2\right\} = \left\{e^{-\ln(2)}, e^{\ln(2)}\right\}.$$

Randomized response for general ϵ

• Each person has data $x_i \in \mathcal{X}$

> Normally data is more complicated than bits

• Tax records, medical records, Instagram profiles, etc

 \succ Use \mathcal{X} to denote the set of possible records

- Analyst wants to know sum of $\varphi: \mathcal{X} \to \{0,1\}$ over x \succ Here φ captures the property we want to sum > E.g. "what is the number of diabetics?"
 - $\varphi((Adam, 168 \, lbs., 17, not \, diabetic)) = 0$
 - $\varphi((Ada, 142 lbs., 47, diabetic)) = 1$
 - We want to learn $\sum_{i=1}^{n} \varphi(x_i)$

For each person *i*, $Y_i = R(\boldsymbol{\varphi}(x_i))$

Ratio is e^{ϵ} (think $1 + \epsilon$ for small ϵ)

- Randomization operator takes $z \in \{0,1\}$: $R(z) = \begin{cases} z & w. p. \frac{1}{e^{\epsilon} + 1} \\ 1 - z & w. p. \frac{1}{e^{\epsilon} + 1} \end{cases}$

Randomized response for general ϵ

- Each person has data $x_i \in \mathcal{X}$
 - → Analyst wants to know sum of φ : $X \rightarrow \{0,1\}$ over x
- Randomization operator takes $z \in \{0,1\}$:

$$R(\mathbf{z}) = \begin{cases} \mathbf{z} & w.p.\frac{e^{\epsilon}}{e^{\epsilon}+1} \\ 1 - \mathbf{z} & w.p.\frac{1}{e^{\epsilon}+1} \end{cases}$$

 $\succ A(x_1,\ldots,x_n)$:

- For each *i*, let $Y_i = R(\varphi(x_i))$
- Return $A = \sum_i (aY_i b)$

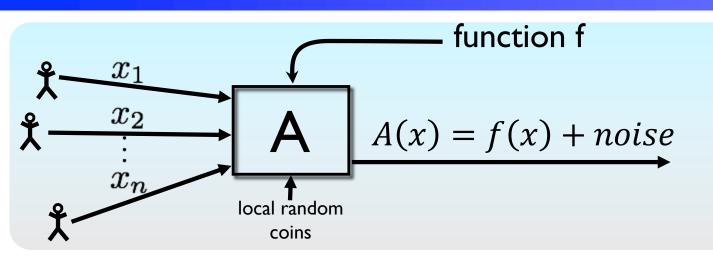
 \succ What values for a, b make $\mathbb{E}(A) = \sum_{i} \varphi(x_{i})$?

We can do much better than this! Coming up ...

• **Proposition:** $\sqrt{\mathbb{E}(A - \sum_{i} \varphi(x_{i}))^{2}} \leq \frac{e^{\epsilon/2}}{e^{\epsilon} - 1} \sqrt{n}. \approx \frac{\sqrt{n}}{\epsilon}$ when ϵ small

The Laplace Mechanism

Example: Noise Addition

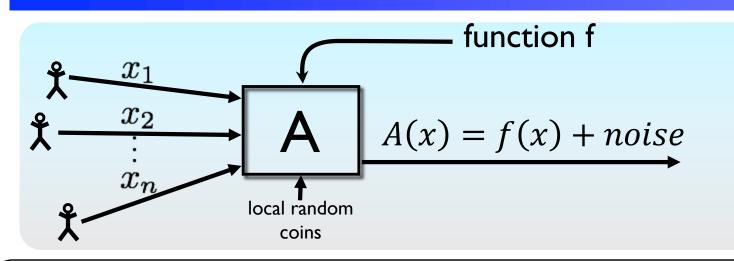


• Say we want to release a summary $f(x) \in \mathbb{R}^d$

▶ e.g., proportion of diabetics: $x \in \{0,1\}$ and $f(x) = \frac{1}{n}\sum_{i} x_{i}$

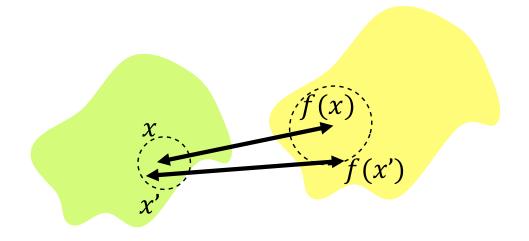
- Simple approach: add noise to f(x)
 ➤ How much noise is needed?
- Intuition: f(x) can be released accurately when f is insensitive to individual entries x_1, \dots, x_n

Laplace Mechanism

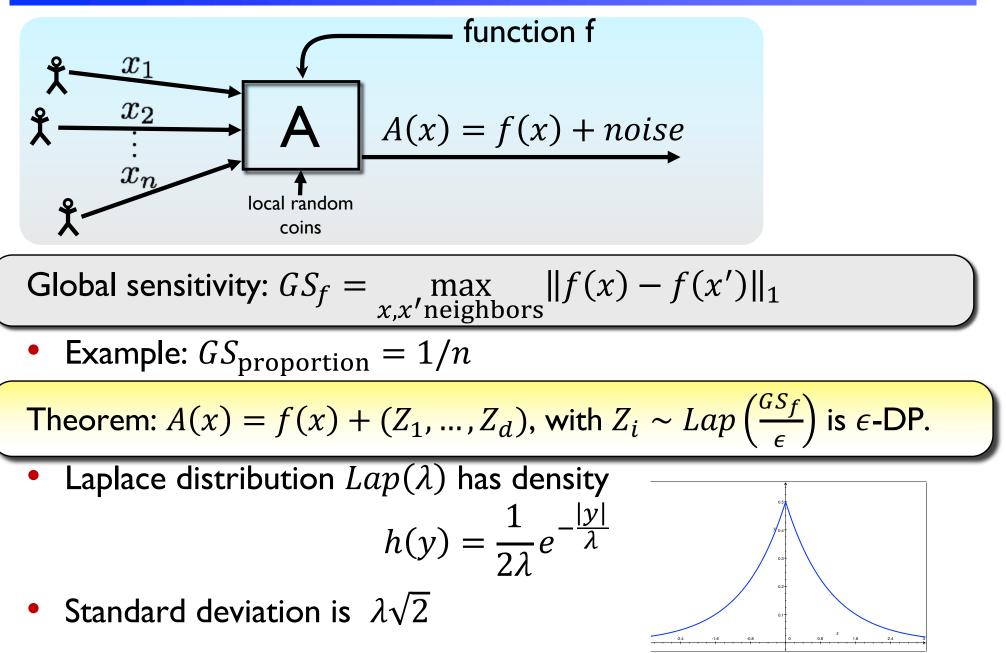


Global Sensitivity: $GS_f = \max_{x,x' \text{ neighbors}} ||f(x) - f(x')||_1$

• Example: $GS_{\text{proportion}} = 1/n$



Laplace Mechanism



Global Sensitivity Examples

Histograms

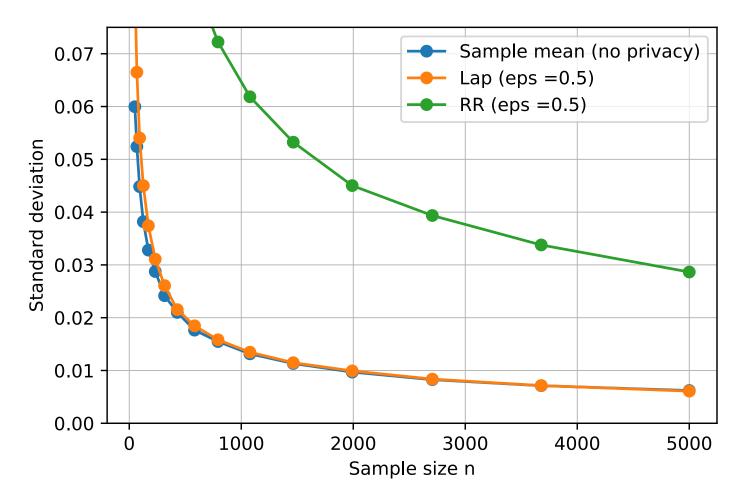
• Sequence of d statistical queries

Proof that Laplace noise satisfies DP

Proof that Laplace noise satisfies DP

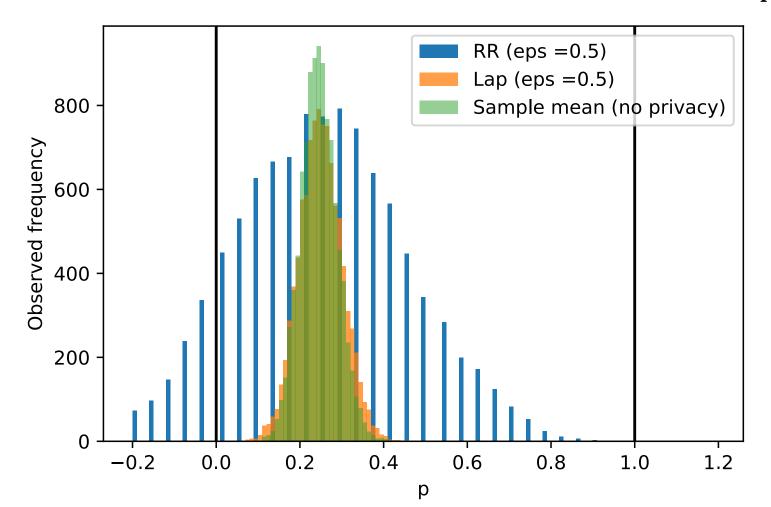
To estimate a proportion...

- Say we want to estimate $f(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Assume $x \in \{0,1\}^n$ is i.i.d. so that $Pr(x_i = 1) = \frac{1}{4}$



To estimate a proportion...

- Say we want to estimate $f(x) = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Assume $x \in \{0,1\}^n$ is i.i.d. so that $\Pr(x_i = 1) = \frac{1}{4}$



Accuracy of the Laplace Mechanism

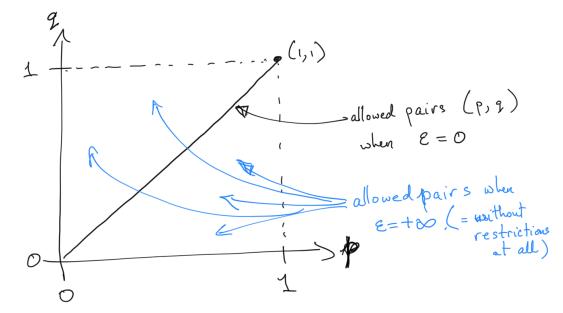
- Let $Z \sim Lap(\lambda)$. Then $\geq \mathbb{E}(|Z|) = \lambda$ \geq For every t > 0: $\Pr(|Z| > t\lambda) \le e^{-t}$.
- Let $Z_1, Z_2, ..., Z_d$ be i.i.d. $Lap(\lambda)$, and let $M = \max(|Z_1|, |Z_2|, ..., |Z_d|)$. Then > For every t > 0: $\Pr(M > \lambda(\ln(d) + t)) \le e^{-t}$. > $\mathbb{E}(M) \le \lambda(\ln(d) + 1)$
- For a histogram with d bins,
 - \succ The expected error of each bin scales with...
 - > The expected error of the worst bin scales with...

The end!

Exercise 1

Let A be an ε -DP mechanism and E an event.

What is the region of possible pairs $(p,q) \in [0,1]^2$ such that $p = Pr(A(x) \in E)$ and $q = Pr(A(x') \in E)$?



- Draw it in the plane
- As ε shrinks, does the region bigger or smaller?
- Are there points in [0,1]² that are not contained in this region for any finite 0 < ε < ∞?

Exercise 2

Suppose that $A : \mathcal{U}^n \to \mathcal{Y}$ is a *deterministic* algorithm. *Prove or disprove:* If A is ε -DP for some finite ε , then A ignores its input—that is, $A(\mathbf{x})$ is the same value regardless of \mathbf{x} .

Exercise 3

Suppose we have a counting query $f(\mathbf{x}) = \sum_{i=1}^{n} \varphi(x_i)$ where $\varphi : \mathcal{U} \to \{0, 1\}$. The Laplace mechanism answers this query with noise parameter $1/\varepsilon$. Now consider the function $f^{(d)}(\mathbf{x})$ which outputs a vector of identical values

$$f^{(d)}(\mathbf{x}) = (\underbrace{f(\mathbf{x}), f(\mathbf{x}), ..., f(\mathbf{x})}_{\longleftarrow}).$$

d times

What is the global sensitivity of $f^{(d)}(\mathbf{x})$? Suppose you want to estimate $f(\mathbf{x})$ from the answer of the Laplace mechanism on query $f^{(d)}$. How would you estimate $f(\mathbf{x})$ and what would the variance of your estimate be? Does it increase, decrease, or stay roughly the same as *d* increases?