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How do we formulate “privacy” for statistical data?

• Question dates back to 1960’s
• Approaches

ØFormulate suite of attack algorithms, look at mechanisms that 
empirically resist those attacks

• E.g. k-anonymity
• Many other approaches

ØFormulate general criteria
• Prove that algorithms which satisfy the criteria resist all attacks in a 

class
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K-anonymity 
• Input is a table
• Output is table of same dimensions in which entries 

have been generalized
• Generalization: 

ØReplace a single value with a set of possible values, e.g.
• 2 à [1,3]
• Male à {Male, Female}
• “adam” à “a******”

• Table is 𝑘-anonymous if 
every row identical to 
at least 𝑘 − 1 others
Ø (Example is 4-anonymous)
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properties is the design of attacks that exploit such information.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given in-
dividual or entity and schemes that are vulnerable to composition
attacks will become increasingly difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 Composition Attacks on Partition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 25, 40, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors if non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two properties
of the partition-based anonymization schemes:
(i) Exact sensitive value disclosure: the “sensitive” value corre-
sponding to each member of the group is published exactly; and
(ii) Locatability: given any individual’s non-sensitive values (non-
sensitive values are exactly those that are assumed to be obtainable
from other, public information sources) one can locate the group
in which individual has been put in. Based on these properties, an
adversary can narrow down the set of possible sensitive values for
an individual by intersecting the sets of sensitive values present in
his/her groups from multiple anonymized releases.

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection

(b)

Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

Properties (i) and (ii) turn out to be widespread. The exact dis-
closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24]). For
other schemes, locatability is not perfect but our experiments sug-
gest that using simple heuristics one can locate a individual’s group
with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model an-
alytically. However, if the sensitive values of the members of a
group could be assumed to be statistically independent of their
non-sensitive attribute values, then a simple birthday-paradox-style
analysis would yield reasonable bounds.
Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of such an attack by mea-
suring the number of individuals who had their sensitive value re-
vealed. Our experimental results confirm that partitioning-based
anonymization schemes including k-anonymity and its recent vari-
ants, ℓ-diversity and t-closeness, are indeed vulnerable to intersec-
tion attacks. Section 3 elaborates our methodology and results.
Related Work on Modeling Background Knowledge. It is im-
portant to point out that the partition-based schemes in the litera-
ture were not designed to be used in contexts where independent
releases are available. Thus, we do not view our results as pointing



Why (not) k-anonymity?
• Appears to resist linkage attacks

ØHard to identify a record uniquely
ØHopefully, hard to link to other information sources

• What can go wrong? 
ØEveryone in their 30’s has cancer
ØAlice does not have a 

broken leg 
Ø…
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properties is the design of attacks that exploit such information.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given in-
dividual or entity and schemes that are vulnerable to composition
attacks will become increasingly difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 Composition Attacks on Partition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 25, 40, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors if non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two properties
of the partition-based anonymization schemes:
(i) Exact sensitive value disclosure: the “sensitive” value corre-
sponding to each member of the group is published exactly; and
(ii) Locatability: given any individual’s non-sensitive values (non-
sensitive values are exactly those that are assumed to be obtainable
from other, public information sources) one can locate the group
in which individual has been put in. Based on these properties, an
adversary can narrow down the set of possible sensitive values for
an individual by intersecting the sets of sensitive values present in
his/her groups from multiple anonymized releases.

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer
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Non-Sensitive Sensitive
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Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

Properties (i) and (ii) turn out to be widespread. The exact dis-
closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24]). For
other schemes, locatability is not perfect but our experiments sug-
gest that using simple heuristics one can locate a individual’s group
with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model an-
alytically. However, if the sensitive values of the members of a
group could be assumed to be statistically independent of their
non-sensitive attribute values, then a simple birthday-paradox-style
analysis would yield reasonable bounds.
Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of such an attack by mea-
suring the number of individuals who had their sensitive value re-
vealed. Our experimental results confirm that partitioning-based
anonymization schemes including k-anonymity and its recent vari-
ants, ℓ-diversity and t-closeness, are indeed vulnerable to intersec-
tion attacks. Section 3 elaborates our methodology and results.
Related Work on Modeling Background Knowledge. It is im-
portant to point out that the partition-based schemes in the litera-
ture were not designed to be used in contexts where independent
releases are available. Thus, we do not view our results as pointing



Composition 
• Suppose we make 

two releases from 
overlapping data 
sets
• Say Alice is 

Ø Is 28 years old
ØLives in 13012
ØAnd her record is 

on both data sets
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properties is the design of attacks that exploit such information.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given in-
dividual or entity and schemes that are vulnerable to composition
attacks will become increasingly difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 Composition Attacks on Partition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 25, 40, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors if non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two properties
of the partition-based anonymization schemes:
(i) Exact sensitive value disclosure: the “sensitive” value corre-
sponding to each member of the group is published exactly; and
(ii) Locatability: given any individual’s non-sensitive values (non-
sensitive values are exactly those that are assumed to be obtainable
from other, public information sources) one can locate the group
in which individual has been put in. Based on these properties, an
adversary can narrow down the set of possible sensitive values for
an individual by intersecting the sets of sensitive values present in
his/her groups from multiple anonymized releases.

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection
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Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

Properties (i) and (ii) turn out to be widespread. The exact dis-
closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24]). For
other schemes, locatability is not perfect but our experiments sug-
gest that using simple heuristics one can locate a individual’s group
with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model an-
alytically. However, if the sensitive values of the members of a
group could be assumed to be statistically independent of their
non-sensitive attribute values, then a simple birthday-paradox-style
analysis would yield reasonable bounds.
Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of such an attack by mea-
suring the number of individuals who had their sensitive value re-
vealed. Our experimental results confirm that partitioning-based
anonymization schemes including k-anonymity and its recent vari-
ants, ℓ-diversity and t-closeness, are indeed vulnerable to intersec-
tion attacks. Section 3 elaborates our methodology and results.
Related Work on Modeling Background Knowledge. It is im-
portant to point out that the partition-based schemes in the litera-
ture were not designed to be used in contexts where independent
releases are available. Thus, we do not view our results as pointing

Say Adi is 58 and their record is in both data sets. What 
conditions can they have?



“Form” vs “content” in definitions
• One problem with k-anonymity is that 

Ø it specifies a set of acceptable outputs, 
Ødoes not restrict process (algorithm) that produces output

• This leads to more opportunities for leakage
ØE.g., If I know that algorithm uses a minimal generalization, I 

learn that group 3 has someone with age 30, someone with 
age 39

• Meaningful definitions must
consider the algorithm.
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properties is the design of attacks that exploit such information.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given in-
dividual or entity and schemes that are vulnerable to composition
attacks will become increasingly difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 Composition Attacks on Partition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 25, 40, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors if non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two properties
of the partition-based anonymization schemes:
(i) Exact sensitive value disclosure: the “sensitive” value corre-
sponding to each member of the group is published exactly; and
(ii) Locatability: given any individual’s non-sensitive values (non-
sensitive values are exactly those that are assumed to be obtainable
from other, public information sources) one can locate the group
in which individual has been put in. Based on these properties, an
adversary can narrow down the set of possible sensitive values for
an individual by intersecting the sets of sensitive values present in
his/her groups from multiple anonymized releases.
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4 130** <30 * Viral Infection
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7 130** ≥40 * Viral Infection
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Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

Properties (i) and (ii) turn out to be widespread. The exact dis-
closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24]). For
other schemes, locatability is not perfect but our experiments sug-
gest that using simple heuristics one can locate a individual’s group
with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model an-
alytically. However, if the sensitive values of the members of a
group could be assumed to be statistically independent of their
non-sensitive attribute values, then a simple birthday-paradox-style
analysis would yield reasonable bounds.
Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of such an attack by mea-
suring the number of individuals who had their sensitive value re-
vealed. Our experimental results confirm that partitioning-based
anonymization schemes including k-anonymity and its recent vari-
ants, ℓ-diversity and t-closeness, are indeed vulnerable to intersec-
tion attacks. Section 3 elaborates our methodology and results.
Related Work on Modeling Background Knowledge. It is im-
portant to point out that the partition-based schemes in the litera-
ture were not designed to be used in contexts where independent
releases are available. Thus, we do not view our results as pointing



Differential privacy

7



Differential privacy (c. 2006)
• Rigorous guarantees against arbitrary external 

information
Ø In particular: resists known attacks

• Burgeoning field of research
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Algorithms Crypto,
security

Statistics,
learning

Game theory,
economics

Databases,
programming

languages

Law,
policy



Differential Privacy

• Data set  𝑥 = 𝑥!, … , 𝑥" ∈ 𝒰"

ØDomain 𝒰 can be numbers, categories, tax forms
ØThink of 𝑥 as fixed (not random)

• A = randomized procedure
Ø𝐴(𝑥) is a random variable
ØRandomness might come from adding noise, resampling, etc.

10

local random 
coins

A A(x)



Differential Privacy

• A thought experiment
ØChange one person’s data (or add or remove them)
ØWill the distribution of outputs change much?
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local random 
coins

A A(x’)

local random 
coins

A A(x)

For any set of 
outcomes, about 
the same 
probability in 
both worlds
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local random 
coins

A A(x’)

𝒙’ is a neighbor of 𝒙 
if they differ in one data point

local random 
coins

A A(x)

Differential Privacy

Definition:  A is 𝜖-differentially private if, 
for all neighbors 𝑥, 𝑥’, 
for all subsets 𝐸 of outputs

Pr 𝐴 𝑥 ∈ 𝐸 ≤ 𝑒#Pr(𝐴 𝑥$ ∈ 𝐸)

Neighboring databases 
induce close distributions 
on outputs



Differential Privacy
• This is a condition on the algorithm 

• What is 𝜖?
ØMeasure of information leakage

• Exact metric matters

ØSmall, but not too small (think !
!"

, not !
#!"

)

13

Definition:  A is 𝜖-differentially private if, 
for all neighbors 𝑥, 𝑥’, 
for all subsets 𝐸 of outputs

Pr 𝐴 𝑥 ∈ 𝐸 ≤ 𝑒#Pr(𝐴 𝑥$ ∈ 𝐸)

Neighboring databases 
induce close distributions 
on outputs



Randomized Response

• Say we want to release the proportion of diabetics in a data 
set
Ø Each person’s data is 1 bit: 𝑥! = 0 or 𝑥! = 1

• Randomized response: each individual rolls a die
Ø 1, 2, 3 or 4: Report true value 𝑥!
Ø 5 or 6: Report opposite value %𝑥!

• Output is list of reported values 𝑌!, … , 𝑌"
Ø Can estimate sum of 𝑥! ’s that are 1 when 𝑛 is large
Ø Lecture 1 exercise: estimator with error 𝑂( 𝑛)
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local random 
coins

A 𝐴 𝑥 = 𝑌!, … , 𝑌$

Exercise 1: 
This mechanism is 𝜖-DP for…
a) 𝜖 = 1/10
b) 𝜖 = 1/2
c) 𝜖 = ln(2)
d) 𝜖 = 1
e) 𝜖 = ln(3)
f) 𝜖 = 3



Two equivalent versions

• Proof of equivalence (exercise):
Ø (2) ⟹ (1): Apply the definition with 𝐸 = 𝑎 .
Ø (1) ⟹ (2): Use Pr 𝐴 𝑥 ∈ 𝐸 = ∑%∈'Pr(𝐴 𝑥 = 𝑦).
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Definition:  A is 𝜖-differentially private if, 
for all neighbors 𝑥, 𝑥’, 
for all subsets 𝐸 of outputs

Pr 𝐴 𝑥 ∈ 𝐸 ≤ 𝑒#Pr(𝐴 𝑥$ ∈ 𝐸)

Definition:  A is 𝜖-differentially private if, 
for all neighbors 𝑥, 𝑥’, 
for all particular outputs 𝑦

Pr 𝐴 𝑥 = 𝑦 ≤ 𝑒#Pr(𝐴 𝑥$ = 𝑦)

Neighboring databases 
induce close distributions 
on outputs



𝑹𝑹 is 𝒍𝒏(𝟐)-DP
What statement do we have to prove?
• Fix any data set �⃗� ∈ 0,1 ", and any neighboring data set �⃗�#

Ø Let 𝑖 be the position where 𝑥! ≠ 𝑥!
"

Ø (Recall 𝑥# = 𝑥#" for all 𝑗 ≠ 𝑖)

• Fix an output �⃗� ∈ 0,1 "

Pr 𝐴 �⃗� = �⃗� =
2
3

# %:'$()$ 1
3

# %:'$*)$

(because decisions made independently)
• When we change one output, one term in the product 

changes (from +
,

to !
,

or vice versa)

• So -. / '⃗ ()
-. / '⃗# ()

∈ !
+
, 2 = 𝑒1 23 + , 𝑒23 + .

16



Randomized response for general 𝝐
• Each person has data 𝑥4 ∈ 𝒳

Ø Normally data is more complicated than bits
• Tax records, medical records, Instagram profiles, etc

Ø Use 𝒳 to denote the set of possible records

• Analyst wants to know sum of 𝜑: 𝒳 → 0,1 over 𝒙
Ø Here 𝜑 captures the property we want to sum
Ø E.g. “what is the number of diabetics?”

• 𝜑 𝐴𝑑𝑎𝑚, 168 𝑙𝑏𝑠. , 17, 𝑛𝑜𝑡 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐 = 0
• 𝜑 𝐴𝑑𝑎, 142 𝑙𝑏𝑠. , 47, 𝑑𝑖𝑎𝑏𝑒𝑡𝑖𝑐 = 1
• We want to learn ∑!"#

$ 𝜑(𝑥!)

• Randomization operator takes 𝑧 ∈ {0,1}:

𝑅 𝑧 = :
𝑧 𝑤. 𝑝. R%

R%S!

1 − 𝑧 𝑤. 𝑝. !
R%S!
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Ratio is 𝑒% (think 1 + 𝜖 for small 𝜖) 

For each person 𝑖,
𝑌( = 𝑅 𝜑 𝑥(



Randomized response for general 𝝐
• Each person has data 𝑥( ∈ 𝒳

Ø Analyst wants to know sum of 𝜑:𝒳 → 0,1 over 𝒙

• Randomization operator takes 𝑧 ∈ {0,1}:

𝑅 𝑧 = I
𝑧 𝑤. 𝑝. )#

)#*!

1 − 𝑧 𝑤. 𝑝. !
)#*!

• How can we estimate a proportion?
Ø𝐴 𝑥!, … . , 𝑥$ :

• For each 𝑖, let 𝑌! = 𝑅 𝜑 𝑥!
• Return 𝐴 = ∑! 𝑎𝑌! − 𝑏

ØWhat values for 𝑎, 𝑏 make 𝔼 𝐴 = ∑(𝜑 𝑥( ?

• Proposition: 𝔼 𝐴 −∑(𝜑 𝑥(
% ≤ )#/%

)#+!
𝑛.
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We can do much 
better than this!
Coming up …

≈ $
,

when 𝜖 small



The Laplace Mechanism
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Example: Noise Addition

• Say we want to release a summary 𝑓 𝑥 ∈ ℝ&

Øe.g., proportion of diabetics: 𝑥 ∈ 0,1 and 𝑓 𝑥 = !
$
∑( 𝑥(

• Simple approach: add noise to 𝑓(𝑥)
ØHow much noise is needed?

• Intuition:  𝑓(𝑥) can be released accurately when 𝑓 is 
insensitive to individual entries 𝑥!, … , 𝑥"

20

local random 
coins

A

function f

𝐴 𝑥 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒



Laplace Mechanism

Global Sensitivity: 𝐺𝑆- = max
.,.& 012345678

𝑓 𝑥 − 𝑓 𝑥9 !

• Example: 𝐺𝑆:76:67;260 = 1/𝑛

21

local random 
coins

A

function f

𝑥

𝑥’

𝑓(𝑥)

𝑓(𝑥’)

𝐴 𝑥 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒



Laplace Mechanism
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local random 
coins

A

function f

𝐴 𝑥 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒

Global sensitivity: 𝐺𝑆- = max
.,.&012345678

𝑓 𝑥 − 𝑓 𝑥9 !

• Example: 𝐺𝑆:76:67;260 = 1/𝑛

Theorem: 𝐴 𝑥 = 𝑓 𝑥 + (𝑍!, … , 𝑍"), with 𝑍# ∼ 𝐿𝑎𝑝
$%&
&

is 𝜖-DP.

• Laplace distribution 𝐿𝑎𝑝 𝜆 has density

ℎ 𝑦 =
1
2𝜆 𝑒

+ <
=

• Standard deviation is  𝜆 2
-2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2

0.1

0.2

0.3

0.4

0.5



Global Sensitivity Examples
• Histograms

• Sequence of 𝑑 statistical queries
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Proof that Laplace noise satisfies DP
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Proof that Laplace noise satisfies DP
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To estimate a proportion…
• Say we want to estimate 𝑓 𝑥 = !

"
∑'(!" 𝑥'

• Assume 𝑥 ∈ 0,1 " is i.i.d. so that Pr 𝑥' = 1 = !
)
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To estimate a proportion…
• Say we want to estimate 𝑓 𝑥 = !

"
∑'(!" 𝑥'

• Assume 𝑥 ∈ 0,1 " is i.i.d. so that Pr 𝑥' = 1 = !
)

27



Accuracy of the Laplace Mechanism
• Let 𝑍 ∼ 𝐿𝑎𝑝(𝜆). Then

Ø𝔼 |𝑍| = 𝜆
ØFor every 𝑡 > 0: Pr 𝑍 > 𝑡𝜆 ≤ 𝑒+>.

• Let 𝑍!, 𝑍%, … , 𝑍& be i.i.d. 𝐿𝑎𝑝 𝜆 , and 
let 𝑀 = max 𝑍! , 𝑍% , … , 𝑍& . Then
ØFor every 𝑡 > 0: Pr 𝑀 > 𝜆 ln 𝑑 + 𝑡 ≤ 𝑒+>.
Ø𝔼 𝑀 ≤ 𝜆 ln 𝑑 + 1

• For a histogram with 𝑑 bins, 
ØThe expected error of each bin scales with…
ØThe expected error of the worst bin scales with…

28



The end!
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Exercise 1
Let 𝐴 be an 𝜀-DP mechanism and 𝐸 an event.
What is the region of possible pairs 𝑝, 𝑞 ∈ 0,1 + such that 

𝑝 = Pr 𝐴 𝑥 ∈ 𝐸 and 𝑞 = Pr 𝐴 𝑥′ ∈ 𝐸 ?

• Draw it in the plane
• As 𝜀 shrinks, does the region bigger or smaller? 
• Are there points in 0,1 + that are not contained in this 

region for any finite 0 < 𝜀 < ∞?
30

Privacy in Statistics and Machine Learning Spring 2023
In-class Exercises for Lecture 4 (Di�erential Privacy Foundations I)
January 31, 2023
Adam Smith (based on materials developed with Jonathan Ullman)

1. Let � be an Y-DP mechanism mapping U= to the set Y, let ⇢ ✓ Y be an event, and let x, x0 be
neighboring data sets.
What is the shape of the region of possible pairs (?,@) 2 [0, 1]2 such that ? = P (�(x) 2 ⇢) and
@ = P (�(x0) 2 ⇢)? Can you describe it geometrically? As Y shrinks, does it get bigger or smaller?
Are there points in [0, 1]2 that are not contained in this region for any �nite 0 < Y < 1?
Example: for Y = 0, we must have ? = @, so the possible pairs lie on a line segment connecting
(0, 0 and (1, 1).

2. Suppose that � : U= ! Y is a deterministic algorithm. Prove or disprove: If � is Y-DP for some
�nite Y, then � ignores its input—that is, �(x) is the same value regardless of x.

3. Randomized response: Solve Problem 2 (getting an estimator from randomized response with
Y = ln(2)) from the in-class exercises for Lecture 1.

4. Suppose we use the Laplace mechanism to estimate the number of individuals in a data set who
reside in each of the 3,143 counties1 in the US, using parameter Y = 0.1. What does Lemma 4.4
imply about the expected error of the count for Su�olk County, MA? What does it imply about
the expectation of the largest error in the estimate of any county population?

5. Suppose we have a counting query 5 (x) =
Õ=

8=1 i (G8) where i : U ! {0, 1}. The Laplace
mechanism answers this query with noise parameter 1/Y. Now consider the function 5 (3 ) (x)
which outputs a vector of identical values

5 (3 ) (x) = (5 (x), 5 (x), ..., 5 (x)|                  {z                  }
3 times

) .

What is the global sensitivity of 5 (3 ) (x)? Suppose you want to estimate 5 (x) from the answer
of the Laplace mechanism on query 5 (3 ) . How would you estimate 5 (x) and what would the
variance of your estimate be? Does it increase, decrease, or stay roughly the same as 3 increases?

1This number includes county equivalents, and was drawn from the Wikipedia article “List of United States counties and
county equivalents” in February 2021.

1



Exercise 2
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Privacy in Statistics and Machine Learning Spring 2023
In-class Exercises for Lecture 4 (Di�erential Privacy Foundations I)
January 31, 2023
Adam Smith (based on materials developed with Jonathan Ullman)

1. Let � be an Y-DP mechanism mapping U= to the set Y, let ⇢ ✓ Y be an event, and let x, x0 be
neighboring data sets.
What is the shape of the region of possible pairs (?,@) 2 [0, 1]2 such that ? = P (�(x) 2 ⇢) and
@ = P (�(x0) 2 ⇢)? Can you describe it geometrically? As Y shrinks, does it get bigger or smaller?
Are there points in [0, 1]2 that are not contained in this region for any �nite 0 < Y < 1?
Example: for Y = 0, we must have ? = @, so the possible pairs lie on a line segment connecting
(0, 0 and (1, 1).

2. Suppose that � : U= ! Y is a deterministic algorithm. Prove or disprove: If � is Y-DP for some
�nite Y, then � ignores its input—that is, �(x) is the same value regardless of x.

3. Randomized response: Solve Problem 2 (getting an estimator from randomized response with
Y = ln(2)) from the in-class exercises for Lecture 1.

4. Suppose we use the Laplace mechanism to estimate the number of individuals in a data set who
reside in each of the 3,143 counties1 in the US, using parameter Y = 0.1. What does Lemma 4.4
imply about the expected error of the count for Su�olk County, MA? What does it imply about
the expectation of the largest error in the estimate of any county population?

5. Suppose we have a counting query 5 (x) =
Õ=

8=1 i (G8) where i : U ! {0, 1}. The Laplace
mechanism answers this query with noise parameter 1/Y. Now consider the function 5 (3 ) (x)
which outputs a vector of identical values

5 (3 ) (x) = (5 (x), 5 (x), ..., 5 (x)|                  {z                  }
3 times

) .

What is the global sensitivity of 5 (3 ) (x)? Suppose you want to estimate 5 (x) from the answer
of the Laplace mechanism on query 5 (3 ) . How would you estimate 5 (x) and what would the
variance of your estimate be? Does it increase, decrease, or stay roughly the same as 3 increases?

1This number includes county equivalents, and was drawn from the Wikipedia article “List of United States counties and
county equivalents” in February 2021.

1



Exercise 3

32

Privacy in Statistics and Machine Learning Spring 2023
In-class Exercises for Lecture 4 (Di�erential Privacy Foundations I)
January 31, 2023
Adam Smith (based on materials developed with Jonathan Ullman)

1. Let � be an Y-DP mechanism mapping U= to the set Y, let ⇢ ✓ Y be an event, and let x, x0 be
neighboring data sets.
What is the shape of the region of possible pairs (?,@) 2 [0, 1]2 such that ? = P (�(x) 2 ⇢) and
@ = P (�(x0) 2 ⇢)? Can you describe it geometrically? As Y shrinks, does it get bigger or smaller?
Are there points in [0, 1]2 that are not contained in this region for any �nite 0 < Y < 1?
Example: for Y = 0, we must have ? = @, so the possible pairs lie on a line segment connecting
(0, 0 and (1, 1).

2. Suppose that � : U= ! Y is a deterministic algorithm. Prove or disprove: If � is Y-DP for some
�nite Y, then � ignores its input—that is, �(x) is the same value regardless of x.

3. Randomized response: Solve Problem 2 (getting an estimator from randomized response with
Y = ln(2)) from the in-class exercises for Lecture 1.

4. Suppose we use the Laplace mechanism to estimate the number of individuals in a data set who
reside in each of the 3,143 counties1 in the US, using parameter Y = 0.1. What does Lemma 4.4
imply about the expected error of the count for Su�olk County, MA? What does it imply about
the expectation of the largest error in the estimate of any county population?

5. Suppose we have a counting query 5 (x) =
Õ=

8=1 i (G8) where i : U ! {0, 1}. The Laplace
mechanism answers this query with noise parameter 1/Y. Now consider the function 5 (3 ) (x)
which outputs a vector of identical values

5 (3 ) (x) = (5 (x), 5 (x), ..., 5 (x)|                  {z                  }
3 times

) .

What is the global sensitivity of 5 (3 ) (x)? Suppose you want to estimate 5 (x) from the answer
of the Laplace mechanism on query 5 (3 ) . How would you estimate 5 (x) and what would the
variance of your estimate be? Does it increase, decrease, or stay roughly the same as 3 increases?

1This number includes county equivalents, and was drawn from the Wikipedia article “List of United States counties and
county equivalents” in February 2021.
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