
Privacy in Statistics and Machine Learning Spring 2025
Lecture 10: Advanced Composition

Adam Smith (based on materials developed with Jonathan Ullman)

1 Advanced Composition of Approximate DP

In this lecture, we show that (𝜀, 𝛿)-differential privacy satisfies a “strong composition” theorem, in which
the 𝜀 parameter increases only with the square root of the number of stages of the composition.

Consider an algorithm 𝐴 that consists of the adaptive composition of 𝑘 algorithms, each of which is
(𝜀, 𝛿)-DP:
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In Lecture 5, we argued that if each individual algorithm is (𝜀, 0)-DP, then the composition of all 𝑘 is
(at worst) (𝑘𝜀, 0)-DP. That is the best one can hope to prove for (𝜀, 0)-DP, but the relaxation to (𝜀, 𝛿)
gives us a different type of guarantee:

Theorem 1.1 (Strong Composition). For all 𝜀, 𝛿 ≥ 0 and 𝛿 ′ > 0, the adaptive composition of 𝑘 algorithms,
each of which is (𝜀, 𝛿)-differentially private, is (𝜀, 𝛿)-differentially private where

𝜀 = 𝜀
√︁

2𝑘 ln(1/𝛿 ′) + 𝑘𝜀 𝑒𝜀−1
𝑒𝜀+1 and 𝛿 = 𝑘𝛿 + 𝛿 ′. (1)

Let’s get a feeling for the asymptotics here. When 𝜀 is not too big (say, at most 1), the quantity 𝑒𝜀−1
𝑒𝜀+1 is

close to 𝜀/2, so the final privacy parameter 𝜀 is Θ(𝜀
√︁
𝑘 ln(1/𝛿) + 𝜀2𝑘) if we take 𝛿 ′ = 𝛿 . Suppose we want

this final privacy guarantee to be at most 1, then we need 𝜀2𝑘 < 1. In that range, we have 𝜀
√
𝑘 > 𝜀2𝑘 , so

𝜀 = Θ
(
𝜀
√︁
𝑘 ln(1/𝛿)

)
when 𝜀 < 1/

√
𝑘.

Contrast this with so-called basic composition (from Lecture 9), which shows that the adaptive composi-
tion of 𝑘 mechanisms that are (𝜀, 𝛿)-DP is (𝑘𝜀, 𝑘𝛿)-DP. When 𝑘 > ln(1/𝛿), strong compositon provides a
much tighter bound (see Figure 1 for an example). This is crucial when we analyze iterative algorithms
that have many stages, as with Lloyd’s algorithm from Lecture 5 and the differentially private gradient
descent methods we will see in Lecture 11.

For example, consider the task of approximating a set of𝑑 count queries. Absent a special relationship
between the queries, the global ℓ1 sensitivity of the vector of counts is 𝑑 and so the Laplace mechanism
adds noise Θ(𝑑/𝜀) to each query’s answer. The Gaussian mechanism from last lecture would add noise
of expected magnitude only Θ(

√︁
𝑑 ln(1/𝛿)/𝜀) because the ℓ2 sensitivity of the vector is

√
𝑑 .

However, we can alternately view the Laplace mechanism on the whole vector as the composition of
𝑑 separate instances of the Laplace mechanism—one for each query. If we ensure each one is (𝜀′, 0)-DP,
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Figure 1: Bounds on the privacy parameter obtained for the composition of 𝑘 mechanisms, each of which is
(𝜀, 0)-DP for 𝜀 = 0.01. The horizontal axis represents the number 𝑘 of mechanisms. The blue (straight) curve
shows the bound 𝑘𝜀 given by basic composition, while the red curve shows the value 𝜀 given by Theorem 1.1 with
𝛿 ′ = 10−6.

then strong composition implies that the whole algorithm is (𝜀, 𝛿)-DP for 𝜀 = Θ(𝜀′
√︁
𝑘 ln(1/𝛿). Setting

𝜀′ = 𝜀√
𝑘 ln(1/𝛿 )

, we see that the Laplace mechanism satisfies (𝜀, 𝛿)differential privacy with a smaller

amount of noise—the same Θ(
√︁
𝑑 ln(1/𝛿)/𝜀) bound we get from the Gaussian mechanism!

Quantitatively Tighter Bounds The bound in Theorem 1.1 provides clean asymptotics, but is not
always tight. First, we’ll see from the proof that the dominant term in the bound on 𝜀 is actually a generic
bound on the tails of the binomial distribution; plugging in exact bounds can improve the constant
terms.

There are also nowmany results that yield tighter bounds for the composition of specific mechanisms
or classes of mechanisms. These have proven crucial for understanding algorithms with many stages of
a particular form, such as stochastic gradient descent (discussed next lecture). For now, though, we will
try to see how to prove the simple, general bound of Theorem 1.1.

2 Privacy Loss as a Random Variable

Given a randomized algorithm 𝐴 and two possible inputs x and x′, define the privacy loss on output 𝑦
to be the “log-odds ratio”, that is, the log of the ratio of the likelihoods of 𝑦 under x and x′:

𝐼x,x′ (𝑦)
def
= ln

(
P (𝐴(x) = 𝑦)
P (𝐴(x′) = 𝑦)

)
. (2)

Last lecture, we showed (Lemma 1.4) that if, for every pair of neighboring data sets x, x′,

P
𝑌←𝐴(x)

(
𝐼x,x′ (𝑌 ) > 𝜀

)
≤ 𝛿 ,

then the mechanism 𝐴 is (𝜀, 𝛿)-DP.
Now when 𝐴 consists of the adaptive composition of 𝑘 mechanisms, we can write the output as a

sequence 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑘 ). We do not want to assume anything about the way that the 𝑗-th algorithm
𝐴 𝑗 is chosen based on 𝑦1, 𝑦2, ..., 𝑦 𝑗−1. Somewhat surprisingly, we don’t have to! We can break up the
probability of seeing the sequence 𝑦 as a product

P (𝐴(x) = 𝑦1, ..., 𝑦𝑘 ) = P (𝐴1(x) = 𝑦1) × P (𝐴2(x, 𝑦1) = 𝑦2) × · · · × P (𝐴𝑘 (x, 𝑦1, ..., 𝑦𝑘−1) = 𝑦𝑘 ) ,
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... which allows us to write the privacy loss as a sum:

𝐼x,x′ (𝑦1, .., 𝑦𝑘 ) =
𝑘∑︁
𝑗=1

ln
(
P
(
𝐴 𝑗 (x, 𝑦1, ..., 𝑦 𝑗−1) = 𝑦 𝑗

)
P
(
𝐴 𝑗 (x′, 𝑦1, ..., 𝑦 𝑗−1) = 𝑦 𝑗

) ) . (3)

The important observation is that in each term of this sum, we are conditioning on the same previous
outputs𝑦1, ..., 𝑦 𝑗−1 in the numerator and denominator. Regardless of how𝐴 𝑗 is chosen, we are comparing
outputs of the same algorithm 𝐴 𝑗 on both outputs.

Basic composition for (𝜀, 0)-DP follows from the fact that for such mechanisms each term in the
sum (3) is at most 𝜀, so the sum is at most 𝑘𝜀.

To prove the strong composition theorem for (𝜀, 𝛿)-DP, we want to take advantage of the fact that
there is some cancelation in this sum. We know (roughly) that each term is contained in the interval
[−𝜀, 𝜀] with high probability. But it turns out that their average is generally at most 𝜀2. When many of
them are added, that is the behavior which dominates.

2.1 Privacy Loss Distributions for Some Representative Mechanisms

To get a sense of that, we can compute this privacy loss for a few example mechanisms, and how it is
distributed.

Gaussian Noise Suppose each 𝐴 𝑗 is an instance of the Gaussian mechanism from last lecture. The
proof of Theorem 2.1 shows that the log-odds ratio is itself normally distributed, namely when
𝑌 is the output of the algorithm under data set x, we have 𝐼x,x′ (𝑌 ) ∼ 𝑁

(
Δ2

2𝜎2 ,
Δ2

𝜎2

)
. We chose

𝜎 = Δ
√︁

2 ln(1/𝛿)/𝜀, so the privacy loss for this mechanism has expectation 𝜀2 · 1
4 ln(1/𝛿 ) .

Randomized Response Let’s look at the example of randomized response from Lectures 1 and 4. Each
input bit 𝑥𝑖 is randomized with a value

𝑌𝑖 =

{
𝑥𝑖 w.p. 𝑒𝜀

𝑒𝜀+1 ,

1 − 𝑥𝑖 w.p. 1
𝑒𝜀+1 .

For every two neighboring datasets x, x′, the privacy loss 𝐼x,x′ (𝑦) is therefore 𝜀 with probability
𝑒𝜀

𝑒𝜀+1 , and −𝜀 with probability 1
𝑒𝜀+1 . It’s expectation is 𝜀 · 𝑒𝜀−1

𝑒𝜀+1 = Θ
(
𝜀2) . Again, we see the same

scaling.

Name and Shame Recall the name and shame algorithm 𝑁𝑆𝛿 from Lecture 5, which outputs each
person’s raw data with probability 𝛿 . If data sets x, x′ differ in person 𝑖’s data, the privacy loss is
+∞ when person 𝑖’s data is released, and 0 when it is not. The expectation of this privacy loss is
∞, but only due to the small probability event in which there is a catastrophic failure of secrecy.

We’ll see below that these three behaviors are representative—every (𝜀, 𝛿)-differentially private
algorithm has privacy loss that is roughly 𝜀2 in expectation, as long as we first set aside some event of
probability at most 𝛿 .

Exercise 2.1. What is the distribution of the privacy loss 𝐼x,x′ (𝑌 ) when 𝐴 is the Laplace mechanism in
one dimension? Show that its expectation is Θ(𝜀2).
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3 Proving Strong Composition

3.1 The Simulation Lemma: Reducing to Leaky Randomized Response

To get a handle on the privacy loss, we’ll actually show that once we fix two neighboring data sets, every
(𝜀, 𝛿)-DP algorithm’s behavior is captured by a very simple “leaky” variant of randomized response.

If 𝑋 and 𝑌 are random variables taking values in the same set (and with probabilities defined
for the same collection of events), we say 𝑋 ≈𝜀,𝛿 𝑌 if for every event 𝐸: 𝑃𝑋 (𝐸) ≤ 𝑒𝜀𝑃𝑌 (𝐸) + 𝛿 and
𝑃𝑌 (𝐸) ≤ 𝑒𝜀𝑃𝑋 (𝐸) + 𝛿 .

We would like to characterize this relation in simpler terms. As a starting point, let’s try to imagine
the simplest pair of random variables that satisfies the relationship. It seems like we need one type
of outcome to capture the 𝛿 additive difference in probabilities, and another type that captures the 𝑒𝜀
multiplicative change. Consider the following two special random variables,𝑈 and 𝑉 , taking values in
the set {0, 1, “I am U”, “I am V”} with the probabilities

Outcome 𝑃𝑈 𝑃𝑉

0 𝑒𝜀 (1−𝛿 )
𝑒𝜀+1

1−𝛿
𝑒𝜀+1

1 1−𝛿
𝑒𝜀+1

𝑒𝜀 (1−𝛿 )
𝑒𝜀+1

“I am U" 𝛿 0
“I am V" 0 𝛿

Suppose you see a realization of either 𝑈 or 𝑉 , and you want to guess which one generated the
value you saw. If you see the outcome “I am 𝑈 ”, then you know that it must have been a realization
of 𝑈 ; hence the name of that value. Similarly, seeing “I am 𝑉 ” tells you with certainty that the value
was a realization of 𝑉 . On the other hand, if you see 0 or 1—which are much more comon when 𝛿 is
small—then you get only a weak signal about which random variable generated the value you saw.

The next lemma shows that every pair of random variables that satisfy 𝑋 ≈𝜀,𝛿 𝑌 are just “disguised
copies” of𝑈 and 𝑉 .

Lemma 3.1 (Simulation Lemma for (𝜀, 𝛿)-DP). For every pair of random variables𝑋,𝑌 such that𝑋 ≈𝜀,𝛿 𝑌 ,
there exists a randomized map 𝐹 such that 𝐹 (𝑈 ) ∼ 𝑋 and 𝐹 (𝑉 ) ∼ 𝑌 .

The proof of Lemma 3.1 is a bit trickly, though fairly intuitive. Murtaugh and Vadhan [?] provide a
self-contained proof. We give a very rough sketch here at the end of these notes.

This lemma says that, once we have fixed two neighboring data sets 𝑥 and 𝑥 ′, we can view the
output of an (𝜀, 𝛿)-differentially private algorithm as conveying no more information than you learn
from seeing one of𝑈 and 𝑉 .

Exercise 3.2. Let 𝑃 = 𝐿𝑎𝑝 (1/𝜀) and 𝑄 = 1 + Lap(1/𝜀) (this is abuse of notation—we mean a Laplace
random variable centered at 1 instead of at 0). Show how they can be generated from𝑈 and𝑉 by giving
an explicit randomized function 𝐹 such that 𝐹 (𝑈 ) ∼ 𝑃 and 𝐹 (𝑉 ) ∼ 𝑄 .

We can use Lemma 3.1 to prove the Strong Composition (Theorem 1.1). Fix a sequence of 𝑘
mechanisms𝐴 𝑗 , each of which takes a data set inU𝑛 as well as a partial transcript𝑦1, ..., 𝑦 𝑗−1 (abbreviated
®𝑦 𝑗−1

1 ) such that, for every partial transcript, 𝐴 𝑗 (·; ®𝑦 𝑗−1
1 ) is (𝜀, 𝛿)-differentially private. Also, fix two data

sets x, x′ that differ in one entry.
For every partial transcript ®𝑦 𝑗−1

1 , we have 𝐴 𝑗 (x; ®𝑦 𝑗−1
1 ) ≈𝜀,𝛿 𝐴 𝑗 (x′; ®𝑦 𝑗−1

1 ) and so there exists a ran-
domized map 𝐹 ®𝑦 𝑗−1

1
such that 𝐹 ®𝑦 𝑗−1

1
(𝑈 ) and 𝐹 ®𝑦 𝑗−1

1
(𝑉 ) have the same distributions as 𝐴 𝑗 (x; ®𝑦 𝑗−1

1 ) and
𝐴 𝑗 (x′; ®𝑦 𝑗−1

1 ), respectively.
This allows use to show the first important claim:
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Claim 3.3. There is a randomized map 𝐹 ∗ such that the composed mechanism 𝐴 satisfies:

𝐴(x) ∼ 𝐹 ∗(𝑈1, ...,𝑈𝑘 ) where𝑈1, ...,𝑈𝑘 ∼𝑖 .𝑖 .𝑑. 𝑈 and (4)
𝐴(x′) ∼ 𝐹 ∗(𝑉1, ...,𝑉𝑘 ) where 𝑉1, ...,𝑉𝑘 ∼𝑖 .𝑖 .𝑑. 𝑉 . (5)

Proof. Consider the algorithm:

Algorithm1: 𝐹 ∗(𝑧1, ..., 𝑧𝑘 ):
1 for 𝑗 = 1 to 𝑘 do
2 𝑦 𝑗 ← 𝐹 ®𝑦 𝑗−1

1
(𝑧 𝑗 ) ;

3 return (𝑦1, ..., 𝑦𝑘 ).

Since 𝐹 ®𝑦 𝑗−1
1
(𝑈 𝑗 ) has the same distribution as 𝐴 𝑗 (x; ®𝑦 𝑗−1

1 ) for each stage 𝑗 , the overall distribution of
𝐹 ∗(𝑈1, ...,𝑈𝑘 ) is the same as 𝐴(x) (and similarly for x′ when the inputs are i.i.d. copies of 𝑉 ). □

To prove that 𝐴 is 𝜀, 𝛿-differentially private, it suffices, by closure under postprocessing, to prove
that (𝑈1, ...,𝑈𝑘 ) ≈𝜀,𝛿 (𝑉1, ...,𝑉𝑘 ). We are almost done!

3.2 Strong Composition for Leaky Randomized Response

Claim 3.4. (𝑈1, ...,𝑈𝑘 ) ≈𝜀,𝛿 (𝑉1, ...,𝑉𝑘 ) where 𝜀, 𝛿 are as in Theorem 1.1.

Proof. We’ll consider two “bad events”: 𝐵1 and 𝐵2. The first, 𝐵1, is when we see a clear signal that the
input was drawn according to𝑈 :

𝐵1 = {®𝑧 : at least one 𝑧 𝑗 is “I am U”}. (6)

If ®𝑧 is distributed as𝑈1, ...,𝑈𝑘 , then the probability of 𝐵1 is exactly 1 − (1 − 𝛿)𝑘 ≤ 𝑘𝛿 .
If ®𝑧 ∼ 𝑈1, ...,𝑈𝑘 , then conditioned on 𝐵1,𝑢 not occurring, we have ®𝑧 ∈ {0, 1}𝑘 . The probability of ®𝑧 is

nonzero under both𝑈 and 𝑉 , and we can compute the odds ratio by taking advantage of independence:

ln
(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

)
=
∑︁
𝑗

ln
(
𝑃𝑈 (𝑧 𝑗 )
𝑃𝑉 (𝑧 𝑗 )

)
=
∑︁
𝑗

ln
(
(1 − 𝛿)𝑒𝜀 (1−𝑧 𝑗 )/(𝑒𝜀 + 1)
(1 − 𝛿)𝑒𝜀 (𝑧 𝑗 )/(𝑒𝜀 + 1)

)
=
∑︁
𝑗

𝜀 (−1)𝑧 𝑗 .

This log odds ratio is thus a sum of bounded, independent random variables under distribution𝑈 , with
expectation

E
®𝑧∼(𝑈1,...,𝑈𝑘 )

(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

���𝐵1

)
= 𝑘𝜀 · E

(
(−1)𝑈

���𝑈 ∈ {0, 1}) = 𝑘𝜀
𝑒𝜀 − 1
𝑒𝜀 + 1

.

By the Chernoff bound, for any 𝑡 > 0 we have

Pr
®𝑧∼𝑈1,...,𝑈𝑘

©­­­­­«
ln

(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

)
> 𝜀︸             ︷︷             ︸

event 𝐵2

���𝐵1

ª®®®®®¬
≤ 𝑒−𝑡

2/2 where 𝜀 def
= 𝑘𝜀

𝑒𝜀 − 1
𝑒𝜀 + 1

+ 𝑡𝜀
√
𝑘.
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Let 𝐵2 be the event that
{
®𝑧 ∈ {0, 1}𝑘 : ln

(
𝑃𝑈 (®𝑧 )
𝑃𝑉 (®𝑧 )

)
> 𝑘𝜀 𝑒

𝜀−1
𝑒𝜀+1 + 𝑡𝜀

√
𝑘

}
. Note that conditioned on 𝐵1 ∩ 𝐵2,

the ratio of 𝑃𝑈 (®𝑧) to 𝑃𝑉 (®𝑧) is bounded. Hence, for any event 𝐸,

𝑃𝑈 (𝐸 ∩ 𝐵1 ∩ 𝐵2) ≤ 𝑒𝜀𝑃𝑉 (𝐸 ∩ 𝐵1 ∩ 𝐵2) ≤ 𝑒𝜀𝑃𝑉 (𝐸) .

This allows us to show the indistinguishability condition we want:

𝑃𝑈 (𝐸) ≤ 𝑃𝑈 (𝐸 ∩ 𝐵1 ∩ 𝐵2) + 𝑃𝑈 (𝐵1) + 𝑃𝑈 (𝐵2 |𝐵1)𝑃𝑈 (𝐵1)
≤ 𝑒𝜀𝑃𝑉 (𝐸) + 𝑘𝛿 + 𝑒−𝑡

2/2 .

Setting 𝑡 =
√︁

2 ln(1/𝛿 ′) completes the proof of Claim 3.4 and also of Theorem 1.1. □

Exercise 3.5. Use the proof strategy from the previous theorem to show that the composition of an
(𝜀1, 𝛿1)-DP algorithm with a (𝜀2, 𝛿2)-DP algorithm is (𝜀1 + 𝜀2, 𝛿1 + 𝛿2)-DP.

3.3 A Proof Sketch for Lemma 3.1

Proof Sketch. We assume for simplicilty that 𝑋 and 𝑌 are discrete. The basic intuition comes from the
picture in Figure 2.

A B𝑃!

𝑃"
𝑒#𝑃! 𝑒#𝑃"

Figure 2: A picture to help understand Lemma 3.1

Let’s first consider the case where 𝛿 = 0. Wewill describe 𝐹 by computing, for each 𝑧, the probabilities
that 𝐹 outputs 𝑧 on inputs 0 and 1. Call these probabilities 𝐹 (𝑧 |0) and 𝐹 (𝑧 |1). What linear combinations
of these two variables should equal 𝑃𝑋 (𝑧) and 𝑃𝑌 (𝑧) respectively? Once we write those down, we can
just solve for 𝐹 (𝑧 |0) and 𝐹 (𝑧 |1). We obtain:

𝑃𝑋 (𝑧) =
𝑒𝜀

𝑒𝜀 + 1
𝐹 (𝑧 |0) + 1

𝑒𝜀 + 1
𝐹 (𝑧 |1) (7)

𝑃𝑌 (𝑧) =
1

𝑒𝜀 + 1
𝐹 (𝑧 |0) + 𝑒𝜀

𝑒𝜀 + 1
𝐹 (𝑧 |1) (8)

(9)

(Question for the reader: How do we know the resulting numbers can be taken to be probabilities?)
To handle the case where 𝛿 > 0, it helps to look at Figure 2. The area under each of the red and green

curves is 1, since the probabilities in the distributions of 𝑋 and 𝑌 each add to 1. We start by proving that
the probabilities of areas 𝐴 and 𝐵 are at most 𝛿 . Now proceed under the assumption that both of them
have area exactly 𝛿 . In that case, you can write 𝑃𝑋 = 𝛿𝑃𝐴 + (1 − 𝛿)𝑃 ′𝑥 and 𝑃𝑌 = 𝛿𝑃𝐵 + (1 − 𝛿)𝑃 ′𝑦 , where
𝑃𝐴, 𝑃𝐵, 𝑃

′
𝑥 , 𝑎𝑛𝑑𝑃

′
𝑦 are probability distributions and 𝑃 ′𝑥 , 𝑃 ′𝑦 satisfy 𝑃 ′𝑥 ≈(𝜀,0) 𝑃 ′𝑦 . You can generate 𝑃𝐴 and

𝑃𝐵 from the inputs “I am 𝑈 ” and “I am 𝑉 ”, and use what you learned in the case 𝛿 = 0 to generate 𝑃 ′𝑥
and 𝑃 ′𝑦 under appropriate distributions on 0 and 1.
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Finally, you can extend this solution to handle the general case with a (slightly) more complicated
calculation. Specifically, let 𝛿𝑥 = 𝑃𝑋 (𝐴) and 𝛿𝑦 = 𝑃𝑌 (𝐵). Let 𝑃 ′𝑥 be the unnormalized distribution
𝑃 ′𝑥 = max {𝑃𝑋 , 𝑒𝜀𝑃𝑌 } and similarly define 𝑃 ′𝑦 = max {𝑃𝑋 , 𝑒𝜀𝑃𝑌 }. These have mass 1 − 𝛿𝑥 and 1 − 𝛿𝑦
respectively. Let

𝐹 (“I am𝑈 ”) = 𝛿𝑥 max {0, 𝑃𝑋 − 𝑒𝜀𝑃𝑌 } +
𝛿 − 𝛿𝑥

𝛿
𝑃 ′𝑥

𝐹 (“I am𝑈 ”) = 𝛿𝑦 max {0, 𝑃𝑌 − 𝑒𝜀𝑃𝑋 } +
𝛿 − 𝛿𝑦

𝛿
𝑃 ′𝑦

𝐹 (0) =
𝑒𝜀 + 1
𝑒2𝜀 − 1

(
𝑒𝜀𝑃 ′𝑥 − 𝑃 ′𝑦

)
𝐹 (1) =

𝑒𝜀 + 1
𝑒2𝜀 − 1

(
𝑒𝜀𝑃 ′𝑦 − 𝑃 ′𝑥

)
.

The probabilities can be verified to satisfy the requirements on 𝐹 in the Lemma. □

Additional Reading and Watching

This presentation is from lecture notes on adaptive analysis by Aaron Roth and Adam Smith [?]. The
first version of the strong composition theorem appeared in [?]. Our presentation is based on Kairouz et
al. [?, ?], as well as Dwork and Roth [?, Sections 3.5.1–2]. The characterization of (𝜀, 𝛿) indistinguishability
of Lemma 3.1 is due to [?]. Their proof is based on a much more general result of Blackwell (1953). A
self-contained proof may be found in [?].

There are now quite a few techniques to get tighter analyses of the for the adpative composition
of specific algorithms. Examples include concentrated DP [?, ?, ?], Renyi DP [?], and Gaussian DP [?].
That literature continues to evolve.
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