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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. In this question we’ll explore an alternative strategy where Colin and Rowena try to play best responses
to the previous action taken by the other player. Consider the following game from the last class’
exercises: [

+2 −1
−2 +3

]
(1)

(a) If you didn’t get to this in the last class, compute equilibrium strategies for Rowena and Colin.
(b) Suppose Rowena and Colin play the game for 𝑇 iterations, and for each 𝑡 , Rowena and Colin both

play a best response to the strategy the other player used on the previous iteration 𝑡 − 1. That is

r𝑡 = argmax
r

r⊤𝑀c𝑡−1 (2)

c𝑡 = argmin
c

r⊤𝑡−1𝑀c (3)

For concreteness, assume r1 = c1 = (1, 0), so Rowena starts by playing the top row and Colin starts
by playing the left column. Do the sequences of strategies converge to an equilibrium of the game?

(c) Consider the same setup as above, but now consider the average strategies

r̂𝑇 =
1
𝑇

𝑇∑︁
𝑡=1

r𝑡 and ĉ𝑇 =
1
𝑇

𝑇∑︁
𝑡=1

c𝑡

Do r̂𝑇 and ĉ𝑇 converge to equilibrium strategies?

2. Prove that if r1, . . . , r𝑇 and c1, . . . , c𝑇 are two sequences that each have regret at most 𝛼 to one another,
then r̂ = 1

𝑇

∑
𝑡 r𝑡 and ĉ = 1

𝑇

∑
𝑡 c𝑡 are 2𝛼-approximate equilibrium strategies.

3. Specialize DualQuery to the case of threshold queries over the universe {1, . . . , 𝐷}. What do the
multiplicative-weights updates for the query-player look like? What do the best-response problems for
the data-player look like?

(See over.)
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4. The privacy analysis (and hence the accuracy analysis) of the DualQuery is somewhat subtle, and this
question will walk you through it at a high level. Recall that in DualQuery, given the query player’s
strategy r𝑡 , we sample queries 𝑖𝑡,1, . . . , 𝑖𝑡,𝑆 independently according to r𝑡 and set r̃𝑡 to be the uniform
distribution over those queries, and we want to understand how this sampling step ensures privacy
without dramatically reducing accuracy.

(a) First, the data player solves the optimization problem

𝑧𝑡 = argmin
𝑧

E
𝑖∼r̃𝑡

(−𝜑𝑖 (𝑧))

when in fact they want to optimize with the query-player’s actual strategy r𝑡 . Show that if we
draw 𝑆 samples then with high probability, the data player’s output will satisfy

𝑧𝑡 ≤ min
𝑧

E
𝑖∼r𝑡

(−𝜑𝑖 (𝑧)) + 𝛼

for some𝛼 = 𝑂 (
√︁
log |U|/𝑆). Thus, the data player’s exact best response to r̃𝑡 is also an approximate

best-response to r𝑡 . [Hint: Chernoff Bounds!]
(b) The previous statement gives us some guidance on how many samples we need to draw from r𝑡 in

order to get good convergence properties, but why would those samples be private. Argue that if
we fix any sequence of responses 𝑧1, . . . , 𝑧𝑡 , and the query player computes r𝑡 using multiplicative
weights on the corresponding losses, with update parameter 𝜂, then each sample from the distri-
bution r𝑡 is private for some 𝜀0 that may depend on 𝜂, 𝑛,𝑇 . [Hint: A few lectures ago we asked a
question about the specific form of the distribution maintained by multiplicative weights. Does it
look like any type of distribution we’ve studied in differential privacy?]

(c) Suppose we run DualQuery for 𝑇 iterations, with an update step size 𝜂, and in each iteration we
take 𝑆 samples from r𝑡 . What bound do we get on the accuracy of the output? [Hint: To get
intuition, it’s helpful to imagine that the bound you prove in part (a) holds with probability 1,
rather than “with high probability”, to avoid having to deal with small probabilities of failure in
different steps of the algorithm]

(d) Suppose we set𝑇, 𝜂, 𝑆 in such a way that the resulting algorithm satisfies (𝜀, 0)-differential privacy.
How big do we need to set 𝑛 in order to guarantee error 𝛼 . Your bound should have a form like

𝑛 ≳
(log |U|)𝑎 (log𝑘)𝑏

𝜀𝑐𝛼𝑑

which is similar to what we obtain for MWEM up to the specific polynomial factors.
(e) How would your answer change if we aim for 𝜀, 𝛿 privacy (ignoring terms that are polynomial in

log(1/𝛿), for simplicity).
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