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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Consider a two-player zero-sum game described by a payoff matrix𝑀 ∈ R | R |× | C | and let (r, c) be a pair
of equilibrium strategies. The support of a strategy is the set of actions with non-zero probability, so

supp(r) = {𝑖 : r𝑖 > 0}

and likewise for supp(c). Prove that every 𝑖 in the support of r is a best-response to c. That is

∀𝑖 ∈ supp(r) E
𝑗∼c

(
𝑀𝑖, 𝑗

)
= max

𝑖′∈R
E
𝑗∼c

(
𝑀𝑖′, 𝑗

)
Note that the analogous statement (with min in place of max) will be true for all actions in the support
of c by symmetry, but don’t spend time proving it separately.

2. Consider the two-player zero-sum game with two actions for each player described by the payoff matrix[
+2 −1
−2 +3

]
(1)

Compute a pair of equilibrium strategies (r, c) for this game. [Hint: How does the property you proved
in Question 1 help you find the equilibrium?]

3. The minmax theorem is the basis of one of the most widely used approaches for proving lower bounds
on the performance of algorithms. Suppose we want to design an algorithm 𝐴 that takes an input
𝑥 from some finite set X and computes something about 𝑥 . We have some real-valued cost function
cost(𝑥,𝐴) describing the cost of running 𝐴 on input 𝑥 . (This cost could be running time, space usage,
query complexity, some measure of “error”. It doesn’t really make a difference.) For a given algorithm 𝐴,
the worst-case cost of 𝐴 is

max
inputs 𝑥

cost(𝑥,𝐴)

A randomized algorithm 𝑅 can always be viewed as a distribution over deterministic algorithms. In that
case, we can consider the worst-case expected cost of 𝑅 as

max
inputs 𝑥

E
𝐴∼𝑅

(cost) (𝑥,𝐴)

(a) (Yao’s minimax principle, part 1) Show that if there exists a distribution x on inputs such that for
every algorithm 𝐴

E
𝑥∼x

(cost(𝑥,𝐴)) ≥ 𝑇

then for every randomized algorithm 𝐴, the worst-case expected cost is at least 𝑇 .
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(b) (Yao’s minimax principle, part 2) Show that if every randomized algorithm 𝑅 has worst-case
expected cost at least𝑇 , then there exists a distribution on inputs x such that for every algorithm𝐴

E
𝑥∼x

(cost(𝑥,𝐴)) ≥ 𝑇

In other words, if every (randomized) algorithm has to have high cost on some input, then there is
a single distribution on inputs such that every (randomized) algorithm has to have high expected
cost on that distribution.
Note: You can assume that the set of algorithms is finite. For example, they could be defined by
Boolean circuits of some finite size.
[Hint: Consider a game in which the row player chooses an algorithm and the column player
chooses an input.]

4. In a previous lecture we showed that MWEM is (𝜀, 𝛿)-differentially private and can answer a set of 𝑘
queries on a dataset in U𝑛 with error at most ≤ 𝛼 on every query (with high probability), provided that

𝑛 ≳
(log |U|)1/2(log 1

𝛿
)1/2(log𝑘)

𝜀𝛼2

Modify the analysis of the algorithm to ensure (𝜀, 0)-differential privacy? Prove a similar guarantee to
above, showing that the algorithm is accurate provided that

𝑛 ≳
(log |U|)𝑎 (log𝑘)𝑏

𝜀𝑐𝛼𝑑

for some constants 𝑎, 𝑏, 𝑐, 𝑑 . What parts of the algorithm and its analysis have to change?

5. To analyze a simple membership inference attack, we consider the following setup:

• Suppose distribution 𝑃 is uniform on {0, 1}𝑘 .
• 𝑛 + 1 data points 𝑋0, 𝑋1, ..., 𝑋𝑛 are sampled i.i.d. from 𝑃 .
• A mechanism, given x = (𝑋1, ..., 𝑋𝑛) releases the mean of each coordinate with independent
Gaussian noise with standard deviation 𝜌 : 𝐴(𝑋1, ..., 𝑋𝑛) = 1

𝑛

∑𝑛
𝑖=1𝑋𝑖 + 𝑍 where 𝑍 ∼ 𝑁 (0, 𝜌2𝐼𝑘 ).

• A test 𝑇 is given a pair (𝑀 ( ®𝑋 ), 𝑌 ). The goal is to decide if 𝑌 = 𝑋1 (a point in the data set; test
should say IN) or 𝑌 = 𝑋0 (a fresh sample, unrelated to the data set; test should say OUT). Consider
the test

𝑇 (𝑎,𝑦) = ⟨𝑎 − 𝜇,𝑦 − 𝜇⟩
where 𝜇 = 1

2 · 1
𝑘 is the mean of the distribution (in R𝑑 ).

Notice that if we set 𝜌 ≈
√
𝑘/𝑛 (equivalently, 𝑘 ≈ 𝜌2𝑛2), then 𝐴 satisfies differential privacy for constant

privacy parameters, which precludes a good test.
We want to show that this test will work well when 𝑘 ≫ 𝑛 + 𝜌2𝑛2; this shows that the Gaussian
mechanism’s accuracy is tight in the regime where 𝑘 ≥ 𝑛.

(a) Show that E (𝑇 |OUT) = 0 and Var (𝑇 |OUT) = Θ( 𝑘
𝑛
+ 𝜌2𝑘).

(b) Show that E (𝑇 |IN) = Θ( 𝑘
𝑛
) and Var (𝑇 |IN) = Θ( 𝑘

𝑛
+ 𝜌2𝑘)

(c) Using Chebyshev’s inequality, conclude that applying a threshold to 𝑇 will correctly distinguish
IN from OUT with probability at least 90% for 𝑘 ≥ 𝐶 max(𝑛, 𝜌2𝑛2) where 𝐶 > 0 is a constant.
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