Privacy in Statistics and Machine LearningSpring 2025In-class Exercises for Lecture 17 (Multiplicative Weights)March 25, 2025

Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

- (Online Learning Requires Randomization) Show that for every method D that plays deterministic actions (where p^t puts probability 1 on a single action) there is an adversary for which D's average regret is Ω(1).
- 2. $(\sqrt{\ln(k)/T} \text{ lower bound})$ Show that for any method (randomized or not), if the adversary picks cost vectors unfiormly at random in $\{0, 1\}^k$, the expected regret will be $\Theta(\sqrt{\log(k)/T})$. (*Hint:* The expected cost paid by the algorithm is exactly T/2. Show that in hindsight, with probability at least 1/2, one of the choices will have cost less than $\frac{T}{2} \Omega(\sqrt{T \ln(k)})$ (for $\ln(k) \ll T$). Start by showing $\frac{T}{2} \Omega(\sqrt{T})$.)

This means that the guarantee obtained by multiplicative weights is tight, in general.

- 3. (MW with a perfect action) Suppose we know ahead of time that there is a perfect choice a^* that always has cost 0. Show that we can set η so that the algorithm achieves total expected cost at most $2 \ln(k)$. (Be careful: our proof required η to be at most 1/2.)
- 4. (*) Show that if we know *OPT* ahead of time, we can set η to get an expected average cost of at most $\frac{OPT}{T} + \frac{3}{T}\sqrt{\ln(k) \cdot \max(OPT, \ln(k))}$.
- 5. Theorem 3.1 requires us to know the number of steps *T* ahead of time. Show that one can modify the algorithm to adapt automatically to the length of the process. Specifically, there is a standard trick known as "repeated doubling": we start the algorithm assuming we will run for $T_0 = 4 \ln(k)$ steps. If the number of steps exceeds T_0 , we restart the algorithm assuming a length of $T_1 = 2T_0$. If the number of steps exceeds $T_0 + T_1$, we expand our time horizon to $T_2 = 2T_1$, and so on. Show that this variation achieves average regret $O(\sqrt{\ln(k)/T})$ of *T* (without knowing *T*).
- 6. How important is it to select higher-cost actions with exponentially small probability? Consider an algorithm that, at each time *t*, selects action *a* with probability that scales polynomially in its cost so far $c_a^{<t}$. Specifically, suppose $p_a^t \propto \frac{1}{1+c_a^{<t}}$. Show a sequence of cost vectors on which the algorithm has expected average regret at least $\Omega(k/T)$ (one can prove a stronger bound; but even this bound hightlights the bad dependency on *k*).

¹The following anti-concentration inequality may be helpful: If $Z \sim Bin(T, \frac{1}{2})$, there exists c > 0 such that $P(Z \leq \frac{T}{2} - c\sqrt{T \ln k}) \geq \frac{1}{k}$ as long as $c\sqrt{T \ln k} < T/4$.