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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Online Learning Requires Randomization) Show that for every method D that plays deter-
ministic actions (where p𝑡 puts probability 1 on a single action) there is an adversary for which D’s
average regret is Ω(1).

2. (
√︁
ln(𝑘)/𝑇 lower bound) Show that for any method (randomized or not), if the adversary picks

cost vectors unfiormly at random in {0, 1}𝑘 , the expected regret will be Θ
(√︁

log(𝑘)/𝑇
)
. (Hint: The

expected cost paid by the algorithm is exactly 𝑇 /2. Show that in hindsight, with probability at least
1/2, one of the choices will have cost less than 𝑇

2 − Ω(
√︁
𝑇 ln(𝑘)) (for ln(𝑘) ≪ 𝑇 ). Start by showing

𝑇
2 − Ω(

√
𝑇 ).) 1

This means that the guarantee obtained by multiplicative weights is tight, in general.

3. (MW with a perfect action) Suppose we know ahead of time that there is a perfect choice 𝑎∗ that
always has cost 0. Show that we can set 𝜂 so that the algorithm achieves total expected cost at most
2 ln(𝑘). (Be careful: our proof required 𝜂 to be at most 1/2.)

4. (*) Show that if we know𝑂𝑃𝑇 ahead of time, we can set 𝜂 to get an expected average cost of at most
𝑂𝑃𝑇
𝑇

+ 3
𝑇

√︁
ln(𝑘) ·max(𝑂𝑃𝑇, ln(𝑘)).

5. Theorem 3.1 requires us to know the number of steps 𝑇 ahead of time. Show that one can modify
the algorithm to adapt automatically to the length of the process. Specifically, there is a standard
trick known as “repeated doubling”: we start the algorithm assuming we will run for 𝑇0 = 4 ln(𝑘)
steps. If the number of steps exceeds 𝑇0, we restart the algorithm assuming a length of 𝑇1 = 2𝑇0. If
the number of steps exceeds 𝑇0 +𝑇1, we expand our time horizon to 𝑇2 = 2𝑇1, and so on. Show that
this variation achieves average regret 𝑂

(√︁
ln(𝑘)/𝑇

)
of 𝑇 (without knowing 𝑇 ).

6. How important is it to select higher-cost actions with exponentially small probability? Consider an
algorithm that, at each time 𝑡 , selects action 𝑎 with probability that scales polynomially in its cost so
far 𝑐<𝑡𝑎 . Specifically, suppose 𝑝𝑡𝑎 ∝ 1

1+𝑐<𝑡𝑎
. Show a sequence of cost vectors on which the algorithm

has expected average regret at least Ω(𝑘/𝑇 ) (one can prove a stronger bound; but even this bound
hightlights the bad dependency on 𝑘).

1The following anti-concentration inequality may be helpful: If 𝑍 ∼ 𝐵𝑖𝑛(𝑇, 12 ), there exists 𝑐 > 0 such that 𝑃 (𝑍 ≤
𝑇
2 − 𝑐

√
𝑇 ln𝑘) ≥ 1

𝑘
as long as 𝑐

√
𝑇 ln𝑘 < 𝑇 /4.
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