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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Exploring Projection) It’s a little magical why the projection mechanism is able to take answers that
are so noisy as to seemingly contain no information about the true answers, and somehow produce
very accurate answers. Here is an example that we think demystifies it a bit.
Suppose we have 𝑘 copies of the exact same count query 𝑓1, . . . , 𝑓𝑘 , so that F ∈ {0, 1}𝑘×𝑚 is a matrix
whose rows are all the same. Suppose you compute noisy answers â ∈ R𝑘 with the Gaussian
mechanism and project into the set of feasible answers C.
Note: The idea of this question is to work through an example from first principles. You can come
up with a much tighter analysis that what is is implied by Theorem 3.1 from the lecture notes.

(a) What is the set of consistent answers C?
(b) Given noisy answers â, what is the projection ã = ΠC (â)?
(c) What is the error of the noisy answers â, and the projected answers ã? Does it increase with 𝑘?

2. (Understanding the bounds of Theorem 3.1) Suppose our data comes from the universe U = {0, 1}𝑑
and we are interested in releasing all 3-way marginal queries—namely, for every triple of indices
𝑖1, 𝑖2, 𝑖3 ∈ [𝑑], and for every three bits 𝑏1, 𝑏2, 𝑏3, we want to estimate the fraction of records 𝑥 in the
data set with 𝑥𝑖1 = 𝑏1 and 𝑥𝑖2 = 𝑏2 and 𝑥𝑖3 = 𝑏3.
What are𝑚 and 𝑘 here? What error bounds do we get for the regular Gaussian mechanism and the
projection mechanism respectively?
How do these answer change if we look at 1-way marginals, 2-way marginals, or 4-way marginals
(instead of 3-way marginals)?

3. (Projection for Monotone Queries) This question explores the special case of the projection mech-
anism that arises from threshold queries over the domain U = {1, . . . , 𝐷}. Here there are 𝐷 − 1
non-trivial queries1

(a) When 𝐷 = 3, there are 2 non-trivial queries, and the feasible set is

C =
{
(𝑎1, 𝑎2) ∈ R2 : 0 ≤ 𝑎1 ≤ 𝑎2 ≤ 1

}
Write (or illustrate) the projection operation ΠC (𝑎1, 𝑎2) for this specific set C.

(b) (*) Suppose the data happens to be such that all the entries of the true answer 𝑎1, ..., 𝑎𝐷−1 are
the same. Projecting a noisy version of this vector onto the set C in (1) will eliminate much of
noise. How good a bound can you give on the ℓ2 error after projection?

1The query 𝑓𝐷 (x) = # {𝑖 : 𝑥𝑖 ≤ 𝐷} evaluates to 1 for every dataset.
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(c) (*) For the general case, the feasible set has the form

C = {(𝑎1, . . . , 𝑎𝐷−1) : 0 ≤ 𝑎1 ≤ · · · ≤ 𝑎𝐷−1 ≤ 1} (1)

Design an explicit polynomial time algorithm for computing projection into the set C (i.e.
without relying on general linear programming as a tool).
[Hints: (1) Dynamic programming! (2) It’s a bit easier if we further require that all the projected
answers are integer multiples of some discretization parameter 𝛾 > 0.]

4. (Bias and Variance) Unlike the Gaussian mechanism which is unbiased, meaning E (ã) = a, the
projection mechanism is not necessarily unbiased.

(a) Consider the case of a single proportion query, forwhich the feasible set is justC = {𝑎 : 0 ≤ 𝑎 ≤ 1}.
Given a data set where the true answer is 𝑎, let 𝑏𝑖𝑎𝑠 (𝑎) = E (𝑎 − 𝑎) denote the bias of the
projection mechanismwith Gaussian noise𝑁 (0, 𝜎2). For what value of 𝑎 is this bias maximized?
In that case, what is the limit of 𝑏𝑖𝑎𝑠 (𝑎)

𝜎
as 𝜎 tends to 0?

(Useful fact: If 𝑍 ∼ 𝑁 (0, 𝜎2), then E ( |𝑍 |) = 𝜎
√︁
2/𝜋 .)

(b) (*) For a single count query, show that every (𝜀, 𝛿)-differentially private mechanism whose
output is always in the range [0, 1] must have bias Ω(1/𝜀𝑛), at least when 𝛿 is sufficiently
small.

5. (From Lecture 13 on the Matrix Mechanism) Let J𝑇 ∈ {0, 1}𝑇×𝑇 be the workload matrix for
threshold queries. This matrix is Toeplitz, which means that the values in the matrix are constant
along each of the diagonals (parallel to the main diagonal). One factorization that often works
well uses the Toeplitz matrix square root R𝑇 , which is a Toeplitz matrix such that R2

𝑇
= J𝑇 . (The

factorization is 𝐿 = 𝑅 = R𝑇 .)
One way to find such a matrix is by diagonalizing J𝑇 and taking the square roots of the eigenvalues
(which might result in complex values). We will instead take a more abstract approach.
A lower-triangular Toeplitz matrix can be described by the sequence of values 𝛼0, 𝛼1, 𝛼2 found on
each of the diagonals, where entry (𝑖, 𝑗) is given by 𝛼𝑖− 𝑗 for 𝑖 ≥ 𝑗 . So J𝑇 is described by the sequence
1, 1, ..., 1.

(a) Show that if two 𝑇 -dimensional Toeplitz matrices are given by the sequences ®𝛼 and ®𝛽 , then
their product is Toeplitz and described by ®𝛾 where 𝛾𝑖 =

∑𝑖
𝑗=0 𝛼 𝑗𝛽𝑖− 𝑗 .

(b) We can associate each sequence with a real-valued polynomial. Specifically, let 𝑓 ®𝛼 (𝑥) =∑𝑇−1
𝑖=0 𝛼𝑖𝑥

𝑖 (where 𝑥 in R). Show that J𝑇 is associated with the function 𝑓𝑇 (𝑥) = 1−𝑥𝑇 −1

1−𝑥 .
(c) Consider the matrix R𝑇 described by the first 𝑇 terms of the power series of 𝑔(𝑥) = 1√

1−𝑥 (no
need yet to write out the actual coefficients). Using just the fact that 𝑔 is the square root of
1

1−𝑥 , show that R2
𝑇
= J𝑇 .

(d) What sequence ®𝜌 describes the square root of J𝑇 ? (You can use Internet tools for this.) How do
the diagonal values 𝜌𝑖 decrease with 𝑖?

(e) (*) For finite 𝑇 , how does this factorization compare to that implied by the binary tree mecha-
nism? You could answer this numerically.

(f) Given a sequence 𝛼 ∈ R𝑇 , show how we can multiply a vector by the Toeplitz matrix given by
𝛼 in time 𝑂 (𝑛 log𝑛) by reducing to the problem of convolution (which is solved by the FFT).
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