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Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Factorization example) Consider the following set of linear queries, expressed as a matrix:

F =


1 0 1 0
1 −1 1 −1
1 1 1 1
0 1 0 1


What is ∥F∥1→2 and what is the (expected ℓ2-norm) error of the gaussian mechanism for these
queries? Find a factorization RM = F with strictly lower error. [Note: there is a relatively simple
factorization with lower error, but we did not work out what the best factorization is.]

2. (Composing factorizations) Suppose we already have a good factorization RM = F for one set of
queries F (e.g. threshold queries). Now suppose someone comes along with another set of queries
F′ such that R′F = F′ (e.g. interval queries). Suppose we answer F′ privately in the following way:
run the factorization mechanism with R,M to answer F and then transforming its answers using R′.
Express the error if this new mechanism in terms of appropriate quantities involving R,M,R′.

3. (Binary tree as a factorization mechanism)

(a) Express the binary tree mechanism from Lecture 9 as an instance of factorization. Specifically,
for the domain U = {1, . . . , 8}, and the set of threshold queries 𝑓𝑡 (x) = 1

𝑛
· #

{
𝑗 : 𝑥 𝑗 ≤ 𝑡

}
for

𝑡 = 1, . . . , 8, write the matrix F, the matrixM describing the set of queries in the binary tree,
and the matrix R describing how to reconstruct the answers to the threshold queries.

(b) In the binary tree mechanism, there are queries for which we can get two independent estimates.
For example, the number of points in {1, ..., 𝑡} can be estimated through (a) adding the noisy
counts for log𝐷 intervals to the left of 𝑡 , and (b) 𝑛 minus the sum of noisy counts for log𝐷
intervals to the right of 𝑡 .
Combining two independent estimates with the same noise distribution reduces variance (say,
by averaging). Will the matrix mechanism capture this kind of optimization automatically, or
does it lie outside of the class of algorithms captured by the mechanism?

(c) Express the binary tree mechanism and its error analysis for a general domainU =
{
1, . . . , 2ℓ

}
as a factorization mechanism. [Notes: I suggest just getting the idea of what it looks like and
how the relevant matrix norms scale with |U|, since writing it with precise notation is going to
be a mess. Also you shouldn’t be concerned if your error bound isn’t quite the same as it was
in Lecture 9, because we’re analyzing the mechanism for Gaussian noise instead of Laplace,
and ℓ2 error instead of the maximum error.]
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4. Let J𝑇 ∈ {0, 1}𝑇×𝑇 be the workload matrix for threshold queries. This matrix is Toeplitz, which
means that the values in the matrix are constant along each of the diagonals (parallel to the main
diagonal). One factorization that often works well is the Toeplitz matrix square root R𝑇 , which is a
Toeplitz matrix such that R2

𝑇
= J𝑇 .

One way to find such a matrix is by diagonalizing J𝑇 and taking the square roots of the eigenvalues
(which might result in complex values). We will instead take a more abstract approach.

Let J∞ be the infinite-dimensional analogue of J𝑇 (you can think of this as a function from N × N
to R, if you like). An inifinite-dimensional lower-triangular Toeplitz matrix can be described by
the sequence of values 𝛼0, 𝛼1, 𝛼2 found on each of the daigonals, where 𝛼0 is the value on the main
diagonal (and entry (𝑖, 𝑗) is given by 𝛼𝑖− 𝑗 for 𝑖 ≥ 𝑗 ). So J∞ is described by the sequence 1, 1, ....

(a) Show that if two infinite-dimensional Toeplitz matrices are given by the sequences ®𝛼 and ®𝛽 ,
then their product, if it exists, is Toeplitz and described by ®𝛾 where 𝛾𝑖 =

∑𝑖
𝑗=0 𝛼 𝑗𝛽𝑖=𝑗 .

(b) We can associate each sequence to a real-valued function via power series. Specifically, let
𝑓 ®𝛼 (𝑥) =

∑∞
𝑖=0 𝛼𝑖𝑥

𝑖 (where 𝑥 in R). Show that J is described by the power series of the function
𝑓 (𝑥) = 1

1−𝑥 .
(c) Consider the matrix R∞ described by the power series of 𝑔(𝑥) = 1√

1−𝑥 (no need yet to write
out the actual coefficients). Show that R2

∞ = J∞. Conclude that for every 𝑇 , the matrix R𝑇
consisting of the top-left 𝑇×T corder of R∞ satisfies R2

𝑇
= J𝑇 .

(d) What sequence ®𝜌 describes the square root of J∞? (You can look this up on the Internet.) How
do the diagonal values 𝜌𝑖 decrease with 𝑖?

(e) (*) For finite 𝑇 , how does this factorization compare to that implied by the binary tree mecha-
nism? You could answer this numerically.

2


