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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. The performance of gradient descent can vary a lot depending on how we choose the step size, even
for convex, one-dimensional problems. Suppose we run gradient descent with the loss function
𝐿(𝑤) = 𝑤2 and no constraints (that is, C = R).

• If we start at𝑤0 = 1 and use step size 𝜂 = 2, how will the algorithm behave? Will it converge?
• How would your answer to the previous part change if we used 𝜂 = 1? What about 𝜂 = 1

2?
• Howwould you answer to the first part change if we imposed the constraint𝑤 ∈ C = [−10, 10]?
What about𝑤 ∈ [10, 20]?

2. Prove the following variant of the Amplification by Subsampling Lemma. Suppose that given an
algorithm 𝐴 whose input can be a data set of any size, we build a new algorithm 𝐴′

𝑝 as follows: on
input x, construct a smaller data set x′ by including each data record from x with probability 𝑝 ,
independently of other data records. Finally, return 𝐴(x′). If 𝐴 is (𝜀, 0)-DP under insertion/removal,
then show that 𝐴′

𝑝 is (𝜀′, 0)-DP under insertion/removal, where 𝜀′ = ln (1 + 𝑝 (𝑒𝜀 − 1)).

3. Let’s generalize the analysis of private SGD to the version where at each step, we use a uniformly
random batch 𝐵𝑡 of𝑚 records to estimate the gradient, so

𝑔𝑡 =

(
1
𝑚

∑︁
𝑖∈𝐵𝑡

∇ℓ (𝑤𝑡−1;𝑥𝑖)
)
+ 𝑁 (0, 𝜎2) .

Given 𝛿 , we want to understand for which 𝜀 this step is (𝜀, 𝛿)-DP. Show that, as long as

𝜎 ≥ 2𝐺
√︁
2 ln(1/𝛿) · 1

𝑚

the privacy cost of one step of gradient descent with subsampling is at most 𝑒 times higher than it
would be if we had used the entire data set to estimate the gradient. In other words, subsampling
has no (asymptotic) effect on privacy as long the noise level is sufficiently high.

4. We analyzed gradient descent for the setting where the diameter 𝑅 of C is bounded. But suppose C
is not bounded—say C = R𝑑 . We could still hope to get a good bound if our initial point𝑤0 is not
too far from a true optimum𝑤∗. A friend conjectures that if one has a good idea of ∥𝑤0 −𝑤∗∥ , one
should be able to set 𝜂 to get a bound of the form

𝐿(𝑤̂) − 𝐿(𝑤∗) ≤
𝐺 ×

(
some function of ∥𝑤0 −𝑤∗∥

)
√
𝑇

.

Are they correct? What function belongs there?
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5. It is common for the learning rate 𝜂 to decrease over the course of gradient descent. Suppose we
set 𝜂𝑡 = 1√

𝑡
, and update the estimate as 𝑢𝑡 = 𝑤𝑡−1 + 𝜂𝑡∇𝐿(𝑤𝑡−1). This way of doing things has the

benefit that we don’t need to set the number of iterations 𝑇 ahead of time.
Show that, when 𝐺 = 𝑅 = 1, we can get the same asymptotic risk bound of 𝑂 (1/

√
𝑇 ) for gradient

descent.

Exercises about convex sets and functions (for reference/practice)

6. Which of these operations, when applied to a set of convex functions, always produces a convex
function? (a) Sum, (b) Min, (c) Max, (d) Median.

7. Show that the set of minima of a convex function is a convex set.

8. Show that for any closed, nonempty convex set C ⊆ R𝑑 , the function 𝑓 (𝑥) = min𝑤∈C ∥𝑥 −𝑤 ∥2 is a
convex function on all of R𝑑 . [Hint: First prove this for 𝑑 = 2. The general case 𝑑 > 2 is a bit harder
to visualize, and can be skipped if you are short on time.]

9. Show that for any closed, nonempty convex setC ⊆ R𝑑 , the projection functionΠC (𝑥) = argmin𝑤∈C ∥𝑥−
𝑤 ∥2 is (a) a well-defined function from R𝑑 to R𝑑 (that is, the minimizer is unique), (b) 1-Lipschitz,
meaning that for all 𝑥,𝑦 ∈ R𝑑 , we have

∥ΠC (𝑥) − ΠC (𝑦)∥2 ≤ ∥𝑥 − 𝑦∥2

[Hint: First prove this for 𝑑 = 2. The general case 𝑑 > 2 is a bit harder to visualize, and can be
skipped if you are short on time.]

10. Prove Jensen’s inequality (Exercise 3.4 in the notes). [Hint: Let 𝜇 = E (𝑋 ) and let 𝑔𝜇 (·) be an affine
lower bound to 𝑓 such that 𝑓 (𝜇) = 𝑔𝜇 (𝜇). What is E

(
𝑔𝜇 (𝑋 )

)
?]

11. The level set of a function 𝑓 at 𝑎 is the set {𝑤 ∈ C : 𝑓 (𝑤) ≤ 𝑎}. Show that if 𝑓 is convex, then all of
its level sets are convex. Show via a counterexample that the converse is false.

12. (*) Suppose 𝑓 : R → R is convex.

(a) Show that the subgradients of 𝑓 are monotone, namely: for every 𝑥1, 𝑥2 ∈ R such that 𝑥1 < 𝑥2,
if 𝑦1 ∈ 𝜕𝑓 (𝑥1) and 𝑦2 ∈ 𝜕𝑓 (𝑥2), then 𝑦1 ≤ 𝑦2. (It might be easier to first prove this for 𝑓 that is
differentiable.)

(b) Show that if 𝑓 is convex and 1-Lipschitz on a finite interval (say [−1, 1]), then it can be written
a constant plus a convex combination of absolute value functions. Specifically, show that there
is a constant 𝑎 and a distribution 𝑃 on [−1, 1] such that for all 𝑥 , 𝑓 (𝑥) = 𝑎 + E

𝑌∼𝑃
( |𝑥 − 𝑌 |).
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