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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Details of the simulation lemma) Recall the proof sketch of the simulation lemma for 𝛿 = 0.
Let 𝑋 and 𝑌 be random variables taking values in a discrete set Z whose distributions are 𝜀-
indistinguishable. For each element 𝑧, the system of equations on page 6 of the notes solves to(

Pr (𝐹 (0) = 𝑧)
Pr (𝐹 (1) = 𝑧)

)
=

1
𝑒𝜀 − 1

(
𝑒𝜀𝑃𝑋 (𝑧) − 𝑃𝑌 (𝑧)
𝑒𝜀𝑃𝑌 (𝑧) − 𝑃𝑋 (𝑧)

)
(a) Consider the Laplace mechanism example from a previous class: assume x and x′ are enigh-

boring datasets with 𝑓 (x) = 0, 𝑓 (x′) = 1 and 𝐴(x) = 𝑓 (x) + Lap(1/𝜀). Give a randomized
algorithm 𝐹 such that 𝐴(x) ∼ 𝐹 (𝑅𝑅𝜀 (0)) and 𝐴(x′) ∼ 𝐹 (𝑅𝑅𝜀 (1)).
Plot the densities of 𝐹 (0) and 𝐹 (1).

(b) (*) Complete the proof sketch of the Simulation Lemma (Lemma 3.1 from the lecture notes) for
the case 𝛿 = 0 by showing that the probabilities (or densities) defined above are always are
nonnegative and add (or integrate) to 1.

2. (Composing the Gaussian mechanism)

(a) Consider a version of the Simulation Lemma that is specific to the Gaussian mechanism: show
that for every function 𝑓 : U𝑛 → R with global sensitivity Δ, for every pair of neighboring
datasets x, x′, there is a randomized algorithm 𝐹 such that

• if𝑈 ∼ 𝑁 (0, 𝜎2) then 𝐹 (𝑈 ) ∼ 𝐴𝑓 ,𝜎 (x), and
• if 𝑉 ∼ 𝑁 (Δ, 𝜎2) then 𝐹 (𝑉 ) ∼ 𝐴𝑓 ,𝜎 (x′),

where 𝐴𝑓 ,𝜎 (x) = 𝑓 (𝑥) + 𝑍 where 𝑍 ∼ 𝑁 (0, 𝜎2).
[Hint: Consider 𝐹 of the form 𝐹 (𝑧) = 𝑎𝑧 + 𝑏 + 𝑁 (0, 𝜌2). Use 𝑎 and 𝑏 to get the means right, and
use 𝜌 to adjust the variance.]

(b) Use part (a) to show that the adaptive composition of 𝑘 executions of the Gaussian mechanism
with Δ-sensitive queries satisfies (𝜀, 𝛿)-DP for 𝜎 =

√
2 ln(1/𝛿 )

𝜀
Δ
√
𝑘 . That is, it satisfies the same

guarantee as does a single execution of the multi-dimennsional Gaussian mechanism on a
𝑘-dimensional function with ℓ2-sensitivity Δ

√
𝑘 .

(c) Show that randomized response 𝑅𝑅𝜀 can be simulated from 𝑈 ∼ 𝑁 (0, 1) and 𝑉 ∼ 𝑁 (Δ, 1) for
some Δ = Θ(𝜀), assuming 𝜀 ≤ 1. (That is, give 𝐹 such that 𝑅𝑅𝜀 (0) ∼ 𝐹 (𝑈 ) and 𝑅𝑅𝜀 (1) ∼ 𝐹 (𝑉 ).)
(How does the required Δ behave when 𝜀 ≫ 1? )
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3. (Stable Histograms, from Lecture 9). Consider the following algorithm for releasing histograms.

Algorithm 1: Stable Histogam(x; 𝜀, 𝛿)
Input: x is a multi-set of values inU.

1 for every 𝑧 ∈ U that appears in x do
2 𝑐𝑧 = # {𝑖 : 𝑥𝑖 = 𝑧} + Lap(1/𝜀)
3 Release the set of pairs {(𝑧, 𝑐𝑧) : 𝑐𝑧 > 𝜏} where 𝜏 = 1 + ln(1/𝛿 )

𝜀
.

This algorithm is remarkable because it adds noise only to the counts of nonempty bins, and the noise
magnitude and threshold are independent of the total number of bins— in principle, the number
of bins could be infinite. For example, if we were counting how many people live on each square
mile of land in Alaska, most of the bins would be empty, but others would have lots of people. This
algorithm would reveal noisy counts only for sufficiently poulated areas.

(a) Show that for any domain U, Algorithm 1 is (𝜀, 𝛿)-differentially private when neighboring
data sets are allowed to differ by the insertion or deletion of one value.
Hint: The delicate part of this result is that we add noise only to counts of non-empty bins.
There are two kinds of adjacent data sets: those where the set of nonempty bins changes, and
those where it does not.
You may need the following simple concentration bound for Laplace random variables: If
𝑌 ∼ Lap(𝜆), then for every 𝑡 > 0, we have Pr(𝑌 > 𝜆𝑡) ≤ 1

2 exp(−𝑡).
(b) Prove that the Stable Histograms algorithm is not (𝜀′, 0) differentially private for any finite

positive value 𝜀′. [Hint: Give two neighboring data sets and a histogram 𝑦 such that 𝑦 is a
possible output for only one of the two data sets.]

4. (More on node stability) Recall from Homework 1 that two graphs are node neighbors if one can
be obtained from the other by removing a node and all of its edges. Let 𝑓 (𝐺) denote the number of
triangles in an undirected graph 𝐺 . You showed in the homework that, on the set of graphs with at
most 𝑛 vertices, the global sensitivity of 𝑓 is

(
𝑛−1
2
)
.

Now, given a parameter 𝑘 and a graph 𝐺 , consider the following linear program:

Variables: 𝑥𝑡 for every triangle 𝑡 in 𝐺
Constraints: For every triangle 𝑡 , 0 ≤ 𝑥𝑡 ≤ 1, and

for every node 𝑢,
∑︁

𝑡 :𝑡 contains 𝑢
𝑥𝑡 ≤ 𝑘 .

Objective: Maximize
∑︁
𝑡

𝑥𝑡 .

Let 𝑓𝑘 (𝐺) denote the value of this linear program (that is, the maximum possible value of the
objective function). Show that

(a) Show that the value of this linear program equals the number of triangles in𝐺 if and only if
every node 𝑢 is contained in at most 𝑘 triangles; and

(b) 𝑓𝑘 has global sensitivity 𝑘 (with no assumption on the neighboring inputs).
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