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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Privacy Loss of the Laplace Mechanism, including Exercise 2.1 From Lecture Notes) In this
exercise, we wish to understand the distribution of the privacy loss 𝐼x,x′ (𝐴(x)) when𝐴 is the Laplace
mechanism in one dimension. Assume 𝑓 (x) = 0 and 𝑓 (x′) = 1 and we add noise Lap(1/𝜀).

(a) Compute 𝐼x,x′ (𝑦) as a function of 𝑦. Sketch a plot of two functions of 𝑦: 𝐼x,x′ (𝑦), and the density
𝑝 (𝐴(x) = 𝑦) of the Laplace mechanism on input x.

(b) Show that the expectation of 𝐼x,x′ (𝑌 ) is 𝑂 (𝜀2), when 𝑌 is drawn according to 𝐴(x) and 𝜀 ≤ 1.

2. (Differentially private top-𝑘 selection) Suppose we have 𝑑 candidate items and a score function
𝑞 : [𝑑] × U𝑛 → R. In the selection problem of Lecture 6, we aimed to find a single high-score item.
Suppose we now want to find 𝑘 < 𝑑

2 high-score items.
Given an algorithm that outputs a set of 𝑘 items 𝑆 = 𝐴(x), we measure error as follows: let 𝑞 (𝑘 ) (x)
be the score of the 𝑘-th best item (so 𝑞 (1) is the maximum score). The error of the algorithm is

𝑞 (𝑘 ) (x) −min
𝑗∈𝑆

𝑞( 𝑗 ; x) .

Consider the the algorithm that proceeds by repeating the exponential mechanism 𝑘 times without
replacement, and using advanced composition to bound the final privacy parameter.
Give as tight an (asymptotic) error guarantee as you can of the form “with probability at least 1 − 𝛽 ,
the algorithm’s error is at most (· · · )” (as a function of 𝑘, 𝑑, 𝜀, 𝛿, 𝛽 .) What is the implied guarantee
on the algorithm’s expected error?

3. (Composing the Gaussian mechanism)

(a) Consider a version of the Simulation Lemma that is specific to the Gaussian mechanism: show
that for every function 𝑓 : U𝑛 → R with global sensitivity Δ, for every pair of neighboring
datasets x, x′, there is a randomized algorithm 𝐹 such that

• if𝑈 ∼ 𝑁 (0, 𝜎2) then 𝐹 (𝑈 ) ∼ 𝐴𝑓 ,𝜎 (x), and
• if 𝑉 ∼ 𝑁 (Δ, 𝜎2) then 𝐹 (𝑉 ) ∼ 𝐴𝑓 ,𝜎 (x′),

where 𝐴𝑓 ,𝜎 (x) = 𝑓 (𝑥) + 𝑍 where 𝑍 ∼ 𝑁 (0, 𝜎2).
[Hint: Consider 𝐹 of the form 𝐹 (𝑧) = 𝑎𝑧 + 𝑏 + 𝑁 (0, 𝜌2). Use 𝑎 and 𝑏 to get the means right, and
use 𝜌 to adjust the variance.]

(b) Use part (a) to show that the adaptive composition of 𝑘 executions of the Gaussian mechanism
with Δ-sensitive queries satisfies (𝜀, 𝛿)-DP for 𝜎 =

√
2 ln(1/𝛿 )

𝜀
Δ
√
𝑘 . That is, it satisfies the same
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guarantee as does a single execution of the multi-dimennsional Gaussian mechanism on a
𝑘-dimensional function with ℓ2-sensitivity Δ

√
𝑘 .

(c) Show that randomized response 𝑅𝑅𝜀 can be simulated from 𝑈 ∼ 𝑁 (0, 1) and 𝑉 ∼ 𝑁 (Δ, 1) for
some Δ = Θ(𝜀), assuming 𝜀 ≤ 1. (That is, give 𝐹 such that 𝑅𝑅𝜀 (0) ∼ 𝐹 (𝑈 ) and 𝑅𝑅𝜀 (1) ∼ 𝐹 (𝑉 ).)
(How does the required Δ behave when 𝜀 ≫ 1? )

4. (Details of the simulation lemma)

(a) Consider the Laplace mechanism example in Problem 1. Give a randomized algorithm 𝐹 such
that 𝐴(x) ∼ 𝐹 (𝑅𝑅𝜀 (0)) and 𝐴(x′) ∼ 𝐹 (𝑅𝑅𝜀 (1)).

(b) (*) Complete the proof sketch of the Simulation Lemma (Lemma 3.1 from the lecture notes).
Start with the case 𝛿 = 0.

5. (Stable Histograms, from last lecture). Consider the following algorithm for releasing histograms.

Algorithm 1: Stable Histogam(x; 𝜀, 𝛿)
Input: x is a multi-set of values inU.

1 for every 𝑧 ∈ U that appears in x do
2 𝑐𝑧 = # {𝑖 : 𝑥𝑖 = 𝑧} + Lap(1/𝜀)
3 Release the set of pairs {(𝑧, 𝑐𝑧) : 𝑐𝑧 > 𝜏} where 𝜏 = 1 + ln(1/𝛿 )

𝜀
.

This algorithm is remarkable because it adds noise only to the counts of nonempty bins, and the noise
magnitude and threshold are independent of the total number of bins— in principle, the number
of bins could be infinite. For example, if we were counting how many people live on each square
mile of land in Alaska, most of the bins would be empty, but others would have lots of people. This
algorithm would reveal noisy counts only for sufficiently poulated areas.

(a) Show that for any domain U, Algorithm 1 is (𝜀, 𝛿)-differentially private when neighboring
data sets are allowed to differ by the insertion or deletion of one value.
Hint: The delicate part of this result is that we add noise only to counts of non-empty bins.
There are two kinds of adjacent data sets: those where the set of nonempty bins changes, and
those where it does not.
You may need the following simple concentration bound for Laplace random variables: If
𝑌 ∼ Lap(𝜆), then for every 𝑡 > 0, we have Pr(𝑌 > 𝜆𝑡) ≤ 1

2 exp(−𝑡).
(b) Prove that the Stable Histograms algorithm is not (𝜀′, 0) differentially private for any finite

positive value 𝜀′. [Hint: Give two neighboring data sets and a histogram 𝑦 such that 𝑦 is a
possible output for only one of the two data sets.]
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