Privacy in Statistics and Machine Learning Spring 2025 In-class Exercises for Lecture 5 (Differential Privacy Foundations II) February 4, 2025

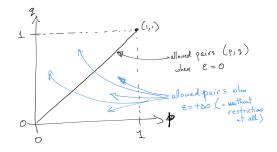
Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Let *A* be an ε -DP mechanism mapping \mathcal{U}^n to the set \mathcal{Y} , let $E \subseteq \mathcal{Y}$ be an event, and let \mathbf{x}, \mathbf{x}' be neighboring data sets.

What is the shape of the region of possible pairs $(p,q) \in [0,1]^2$ such that $p = \mathbb{P}(A(\mathbf{x}) \in E)$ and $q = \mathbb{P}(A(\mathbf{x}') \in E)$? Can you describe it geometrically? As ε shrinks, does it get bigger or smaller? Are there points in $[0,1]^2$ that are not contained in this region for any finite $0 < \varepsilon < \infty$?

Example: for $\varepsilon = 0$, we must have p = q, so the possible pairs lie on a line segment connecting (0, 0 and (1, 1).



- 2. Consider the following two scenarios. For each one, decide whether the overall algorithm can be proven differentially private and justify your decision.
 - (a) A biologist uses an ε -DP algorithm A_1 to release the approximate frequencies of d different diseases in the data set. She then selects the 10 diseases with *the highest reported frequencies in the output of* A_1 , and uses a ε -DP algorithm to release an approximate version of all $\binom{10}{2}$ pairwise correlations between the selected diseases.
 - (b) A biologist uses an ε -DP algorithm to release the approximate frequencies of *d* different diseases in the data set. She then selects the 10 diseases with *the highest true frequencies in the original data set*, and uses a ε -DP algorithm to release all $\binom{10}{2}$ pairwise correlations between the selected diseases.
- 3. (Group Privacy) You are reviewing a paper that claims a new, differentially-private version of Lloyd's algorithm. They claim to have experiments that show good performance on data sets of size 100 with epsilon = 0.005. Should you believe them? Why or why not?
- 4. Analyze the name and shame algorithm (Exercise 3.3).

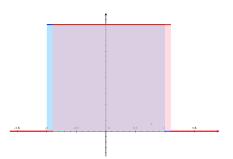
5. What happens if we try to run the Laplace mechanism with different noise distributions? Which of these distributions leads to an ε-DP mechanism? For simplicity, we'll focus on the 1-dimensional case were f : Uⁿ → ℝ, and look at mechanisms of the form

$$A(\mathbf{x}) = f(\mathbf{x}) + \frac{GS_f}{\varepsilon}Z$$
 where $Z \sim P$ and $P = ...$ (1)

- (a) The uniform distribution on [-1, 1] (density h(y) = 1/2 on [-1, 1] and 0 elsewhere)
- (b) The Normal distribution N(0, 1) (density $h(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y^2}$ for $y \in \mathbb{R}$)
- (c) The Cauchy distribution (density $h(y) = \frac{1}{\pi(1+y^2)}$ for $y \in R$)

For which of the options above do we get an ε' -DP mechanism where ε' is finite (not that ε' need not be exactly equal to ε)?

Example: If we shift a copy of the uniform distribution by 0.1, we get the picture below. Are there events whose probability changes by a large multiplicative factor?



Hint 3: Look at the events that the algorithm's output is either at least $\frac{f(\mathbf{x})+f(\tilde{\mathbf{x}})}{2}$ or at most that quantity.

6. (*) Do differentially private algorithms resist reconstruction attacks?

Suppose *A* is an ε -differentially private algorithm that takes input $\mathbf{x} = (x_1, x_2, ..., x_n) \in \{0, 1\}^n$. Consider an algorithm *B* that attempts to reconstruct the input from *A*'s output: on input $A(\mathbf{x})$, it outputs a guess $\tilde{\mathbf{x}}$. Show that, for every algorithm *B*: if \mathbf{x} is selected uniformly at random from $\{0, 1\}^n$, and the algorithm *B* has access only to the output of *A* (nothing else), then

$$\mathbb{E}_{\substack{\mathbf{x}\in_{r}\{0,1\}^{n}\\ \tilde{\mathbf{x}}=B(A(\mathbf{x}))}} (\#\operatorname{errors}(\tilde{\mathbf{x}},\mathbf{x})) \geq \frac{n}{e^{\varepsilon}+1}$$

Here, # errors(y, x) denotes the number of positions in which two vectors disagree (also called the Hamming distance). ¹

Hints: Use linearity of expectation. The number of errors can be written as a sum of randm variables E_i (for i = 1 to n), where E_i is 1 if $\tilde{\mathbf{x}}_i = x_i$ and 0 otherwise. What can you say about the conditional distribution of x_i given a particular output $A(\mathbf{x}) = a$? How big or small can $\Pr(x_i = 1|A(\mathbf{x}) = a)$ be? Given that, what is the largest possible probability that $E_i = 1$?

¹In other words: when ε is small, differentially private algorithms do not allow for non-trivial reconstruction attacks. Even with no output at all, an attacker can always guess about $\frac{n}{2}$ of the bits of **x** in expectation (for example, by guessing the all-zeros string). The result above says that a attack based on differentially private output cannot do much better in expectation.