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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Reconstruction via linear programming.) Consider the reconstruction attack that takes as input
query vectors 𝐹1, . . . , 𝐹𝑘 ∈ {0, 1}𝑛 and noisy answers 𝑎1, . . . , 𝑎𝑘 ∈ R and return the vector 𝑠 ∈ [0, 1]𝑛
that minimizes

max
𝑖=1,...,𝑘

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | (1)

Show how to write a linear program of the form introduced in the notes whose solution is the
optimal vector 𝑠 .

2. (Preventing reconstructonwith subsampling) Consider a dataset x = (𝑥1, . . . , 𝑥𝑛). Nowfix1𝑚 = 𝑛
5 and

we will define the subsampled dataset 𝑌 = (𝑦1, . . . , 𝑦𝑚) as follows. For each 𝑗 ∈ [𝑚], independently
choose a random element 𝑗 ′ ∈ [𝑛] and set 𝑦 𝑗 = 𝑥 𝑗 ′ . Note that the sampling is independent and with
replacement. Suppose we now use 𝑌 to compute the statistics in place of x. That is, using

5 · 𝑓 (𝑌 ) = 5 ·
𝑚∑︁
𝑗=1

𝜑 (𝑦 𝑗 ) (2)

in place of the true answer

𝑓 (x) =
𝑛∑︁
𝑗=1

𝜑 (𝑥 𝑗 ) (3)

We multiply by 5 to account for the fact that𝑚 = 𝑛
5 .

Prove that this random subsample will simultaneously give a good estimate of the answers to many
statistics. Specifically, try to prove the following result

Claim 0.1. Prove that for any set of statistics 𝑓1, . . . , 𝑓𝑘 , with probability at least 99
100 ,

∀𝑖 ∈ [𝑘] :

�����5 · 𝑚∑︁
𝑗=1

𝜑𝑖 (𝑦 𝑗 ) −
𝑛∑︁
𝑗=1

𝜑𝑖 (𝑥 𝑗 )
����� ≤ 𝑂

(√︁
𝑛 log𝑘

)
(4)

How good a reconstruction when queries are answered in this way?
Hint: To prove Claim 0.1 you will likely want to use the following form of “Chernoff Bound”: if
𝑍1, . . . , 𝑍𝑚 are independent where each 𝑍 𝑗 has expectation E

(
𝑍 𝑗

)
= 𝜇 and 𝑍 𝑗 takes values in [0, 1]

then for every𝑤 > 0,

P

( ����� 𝑚∑︁
𝑗=1

𝑍 𝑗 −𝑚𝜇

����� > 𝑤
√
𝑚

)
≤ 𝑒−𝑡

2/3 (5)

1This setting of𝑚 just makes things more concrete. One can take𝑚 to be any size less than 𝑛; the statements just become
more complicated.
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3. * (More accurate reconstruction with more random queries.) In this question we’ll explore how
to interpolate between the two reconstruction theorems we’ve seen. Specifically, we will prove a
version of Theorem 2.5 that gives a more accurate reconstruction when we have 𝑘 ≫ 𝑛 queries.
Suppose we have the following version of Claim 2.6 from the lecture notes:

Claim 0.2. Let 𝑡 ∈ {−1, 0, +1}𝑛 be a vector with at least𝑚 non-zero entries and let 𝑢 ∈ {0, 1}𝑛 be a
uniformly random vector. Then for every parameter 2 ≤ 𝑤 ≪ 2𝑚

P

(
|𝑢 · 𝑡 | ≥

√︁
𝑚 log𝑤
10

)
≥ 1

𝑤
(6)

(a) Using this claim, prove the following theorem
Theorem 0.3. If we ask 𝑛2 ≪ 𝑘 ≪ 2𝑛 queries, and all queries have error at most 𝛼𝑛, then with
extremely high probability, the reconstruction error is at most 𝑂 ( 𝛼2𝑛2

log(𝑘/𝑛) ).
(b) We can reformulate this as the following claim: the attacks gets nontrivial reconstruction error

𝑜 (𝑛) when 𝛼 = 𝑜
( · · ·
· · ·

)
. Fill in the blanks.

(c) How does this theorem compare to the reconstruction attacks we’ve seen for 𝑘 ≈ 𝑛2? What
about 𝑘 ≈ 2

√
𝑛? What about 𝑘 ≈ 2𝑛?

4. Now let’s consider a slightly different setting, in which the attacker gets approximate answers to a
highly structured set of queries.
Specifically, suppose the secret data set 𝑠 consists of 𝑛 bits 𝑠1, ..., 𝑠𝑛 , and suppose the attacker receives
approximate answers only to the 𝑛 prefix sums of the form

∑𝑖
𝑗=1 𝑠 𝑗 (for 𝑖 from 1 to 𝑛). These

correspond to query vectors
𝐹𝑖 = (1, 1, . . . , 1︸     ︷︷     ︸

𝑖 ones

, 0, 0, . . . , 0︸     ︷︷     ︸
𝑛−𝑖 zeros

)

(a) Suppose the curator answers all𝑛 questions exactly. How could the adversary recover 𝑠 exactly?
(b) Suppose that 𝑛 is even (for simplicity) and 𝑠 consists of alternating 0’s and 1’s, that is 𝑠 =

(0101 · · · 01). Show how you could give a sequence of answers 𝑎1, ..., 𝑎𝑛 such that (i) each prefix
sum query is answered to within 1, that is,

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 1 for all 𝑖 = 1, ..., 𝑛 ,

and (ii) the algorithm of Figure 4 (in the lecture notes) would reconstruct a vector 𝑠 that is
wrong in all 𝑛 positions (that is, 𝑠 differs from 𝑠 in every entry.

(c) Try to generalize this as follows: suppose that 𝑠 is uniformly random in {0, 1}𝑛 . Give a procedure
that takes 𝑠 as input and returns a sequence of answers 𝑎1, ..., 𝑎𝑛 such that (i) each prefix sum
query is answered to within 1, that is,

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 1 for all 𝑖 = 1, ..., 𝑛 ,

and (ii) the algorithm of Figure 4 would reconstruct a vector 𝑠 whose expected distance from 𝑠 is
Ω(𝑛). (Here the expectation is taken over the choice of 𝑠 ; the attack of Figure 4 is deterministic
and your algorithm can also be.)

(d) (*) Can you come up with a version of this result that works against every attack algorithm
(with high probability over the choice of 𝑠 and any random choices made by your algorithm
and the attack)?
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