
Privacy in Statistics and Machine Learning Spring 2025
Homework 1: Due Sunday, February 16, 2025

Adam Smith (based on materials developed with Jonathan Ullman)

Collaboration and Honesty Policy Reminder: Collaboration in the form of discussion is allowed.
However, all forms of cheating (copying parts of a classmate’s assignment, plagiarism from papers or
old posted solutions) are NOT allowed. A rough rule of thumb: you should be able to walk away from a
discussion of a homework problem with no notes at all and write your solution on your own. Finding
answers to problems on the Web or from other outside sources (these include anyone not enrolled in
the class) is forbidden.

• You must write up each problem solution by yourself without assistance, even if you collaborate with
others to solve the problem.

• You must identify your collaborators. If you did not work with anyone, you should write “Collab-
orators: none."

• Asking and answering questions in every forum the class provides (on Piazza, in class, and in
office hours) is encouraged!

• Even though looking up answers is forbidden, using the web, generative AI, or similar resources to
find alternative explanations of concepts you need for the homework is allowed, and encouraged.
Asking Deepseek to solve a problem for you is not ok; asking it for an explanation of Chernoff
boudns or for examples of encoding quardatic constraints in Gurobi is fine. You must document
your use of outside sources and describe it at a high level in your solutions.

Problems to be handed in

1. (In-class Exercise 3 from Lecture 3) More accurate reconstruction with more random queries

In this question we’ll explore how to interpolate between the two reconstruction theorems we’ve
seen. Specifically, we will prove a version of Theorem 2.5 that gives a more accurate reconstruction
when we have 𝑘 ≫ 𝑛 queries. Suppose we have the following version of Claim 2.6 from the lecture
notes:

Claim 0.1. Let 𝑡 ∈ {−1, 0, +1}𝑛 be a vector with at least𝑚 non-zero entries and let 𝑢 ∈ {0, 1}𝑛 be a
uniformly random vector. Then for every parameter 2 ≤ 𝑤 ≪ 2𝑚

P

(
|𝑢 · 𝑡 | ≥

√︁
𝑚 log𝑤
10

)
≥ 1

𝑤
(1)

Using this claim, prove the following theorem

Theorem 0.2. If we ask 𝑛2 ≪ 𝑘 ≪ 2𝑛 queries, and all queries have error at most 𝛼𝑛, then with
extremely high probability, the reconstruction error is at most 𝑂 (𝛼2𝑛2

log(𝑘/𝑛)).

How does this theorem compare to the reconstruction attacks we’ve seen for 𝑘 ≈ 𝑛2? What about
𝑘 ≈ 2

√
𝑛? What about 𝑘 ≈ 2𝑛?

1

2. (Node sensitivity) Imagine we have a data set that comes from a simple social network with 𝑛

people. Each node in the graph is a person. For each person, we have the following data: a unique
identifier 𝑢, their income 𝑎𝑢 ∈ [0, 1] and their friend list 𝐹𝑢 , which is a list of identifiers of other
nodes. 𝐹𝑢 can have any size—it can be empty, or consist of all othe nodes, or anything in between.
We assume that friendship is symmetric: if Alice is on Bob’s friend list, then Bob is on Alice’s.

We’ll say two graphs are neighbors if they differ by changing the data for one node, including 𝑎𝑢
and the list of edges connected to that node. Notice that changing one person’s data can potentially
affect everyone’s else list of friends. Because of that, natural things we would like to compute can
have high sensitivity. For example, the number of connected components in the graph can go from
𝑛 (the current number of nodes) to 1 by changing the friend list of a single node.

(a) As a function of 𝑛, what is the global sensitivity of each of the following functions? Give the
best upper bounds and lower bounds that you can. (It should be possible to given an exact
answer, like 𝑛2 − 1), for each of these.)
How does the sensitivity compare to the range of the function (that is, the difference between
the largest and smallest possible values it can return)?
i. the number of edges in the graph
ii. the number of triangles in the graph
iii. the diameter of the graph (this is the largest possible length of the shortest path betweent

two nodes; we define the diameter of a disconnected graph to be the largest diamter of
any of its connected components).

iv. Distance from bipartiteness: this is the smallest number of nodes that must be changed for
the graph to be bipartite.

(b) Income correlation: How correlated are friends’ incomes? Let 𝜇 be the average income in the
graph 𝜇 = 1

𝑛

∑
𝑢 𝑎𝑢 . The income correlation is

𝑔(𝑥) = 1
2#(𝑒𝑑𝑔𝑒𝑠)

∑︁
𝑢

∑︁
𝑖𝑑 ′∈𝐹𝑢

(𝑎𝑢 − 𝜇) (𝑎𝑖𝑑 ′ − 𝜇) .

(We multiply the number of edges by 2 since each edge gets counted twice in the formula.)
This quantity ranges between 0 and 1. Design a differentially private algorithm which approxi-
mates 𝑔 with additive error ±𝑂 (1/𝑛) on all graphs for which #(𝑒𝑑𝑔𝑒𝑠) ≥ 𝑛2/20. (The constant
20 is arbitrary. In fact, one can get vanishing relative error under much weaker conditions.)

3. (Histograms with Randomized Response) We saw a randomized response protocol 𝑅𝑅𝜀 where
each participant inputs a single bit and announces a single output bit. What if each person’s input
is one of 𝑑 different possibilities (say, the name of their favorite artist on Spotify) and we want to
estimate a histogram of how many people have each possible input? Can we do this so that each
person can do the randomization of their data entirely on their own?

Consider the following approach, which we will call approach A:

• Each person encodes their input𝑥𝑖 ∈ [𝑑] as a “one-hot” indicator vector 𝑒𝑥𝑖 = (0, 0, . . . , 0, 1, 0, · · · , 0) ∈
{0, 1}𝑑 where the one is in entry 𝑥𝑖 .

• Each person applies the randomizer 𝑅𝑅𝜀/2 to each entry of this vector, to get a new vector
®𝑌𝑖 ∈ {0, 1}𝑑 , which they announce publicly.

2

Answer the following questions:

(a) Prove that the approach A is 𝜀-differentially private.
(b) Demonstrate that, given the ®𝑌𝑖 ’s, one can estimate the counts of every item with expected error

𝑂

(√
𝑛 ln𝑑
𝜀

)
. You many do this either by giving a proof, or by coding up the mechanism and the

estimation algorithm, and plotting the accuracy it achieves for different values of 𝑛,𝑑, 𝜀. You
should give three plots, each of which shows the effect of 𝑛,𝑑 , or 𝜀.

(c) (*, optional for glory) Now consider approach B, where each person 𝑖 does the following:
• Announce a random vector 𝑢𝑖 ∈ {0, 1}𝑑 (independent of their data)
• Announce 𝑅𝑅𝜀 (𝑢𝑖 (𝑥𝑖)) where 𝑢𝑖 (𝑥𝑖) denotes entry number 𝑥𝑖 of the vector 𝑢𝑖 .

Show that approach B has similary utility to approach A (with the right estimation procedure).
Also, show that it is 𝜀-differentially private regardless of how 𝑢𝑖 is chosen. In particular, we
can choose the 𝑢𝑖 ’s pseudorandomly and send only a seed used to generate 𝑢𝑖 . This reduces
the communication in the protocol dramatically! The pseudorandomness is only required for
arguing accuracy.

4. (Reconstruction from 2-way Marginals) In class, we considered settings where the data set is
binary. But we know that complex machine learning models sometimes encode even very complex
inputs. Let’s consider a setting where one can, somewhat surprisingly, reconstruct the entire data
set from sufficiently rich statistics.

Suppose we have a data set consisting of 𝑛 rows (one per person), with 𝑑 binary attributes per row.
A 1-way marginal describes the distribution in the data set of one particular attribute. Since the
attributes are binary, a one-way marginal is the just count of how many 0’s and 1’s there are in a
particular column. The (𝑑-dimensional) vector of all one-way marginals is just the sum of the rows
of the data.

𝑎 𝑏 𝑐 𝑑

Alice 0 1 1 0
Bob 1 0 1 0
Carol 0 1 0 0

𝑎 𝑏 𝑐 𝑑

One-way 1 2 2 0
marginals

(count of 1’s)

Two-way marginal
for 𝑎, 𝑏

00 0
01 2
10 1
11 0

A two-way marginal describes the distribution of a pair of attributes. It consists of 4 counts, one
for each of the pairs of bits 00, 01, 10, and 11. If we already know the one-way marginals for both
attributes, we just need a single additional number such as the count of 11’s. In the example above,
if we reveal the one-way marginals together with the count of 11’s for the attributes 𝑎, 𝑏 (which is
0), then we can conclude the that 01 appears twice, 10 appears once, and 00 appears 0 times.

One- and two-way marginals are basic summary statistics about a dataset. The question is, when
are they sufficiently rich to pin down the data set exactly?

Mathematically, if𝑋 ∈ {0, 1}0,1𝑛×𝑑 is the original sensitive table, then releasing the one- and two-way
marginals is equivalent to releasing the matrix 𝑋𝑇𝑋 and the parameters 𝑛 and 𝑑 . (Why? Check this
for yourself.)

3

(a) How many different constraints does one learn by seeing 𝑋𝑇𝑋? How does this compare to the
number of variables in 𝑋? For which values of 𝑛 and 𝑑 would you expect to be able to recover
𝑋 from 𝑋𝑇𝑋?

(b) In Python, program the following experiment for values of𝑛 and𝑑 between 1 and 12. Specifcally,
try all pairs 𝑛,𝑑 where 𝑛 ∈ {3, 6, 12} and 𝑑 ∈ {1, 2, . . . , 12}. Repeat the following 20 times for
each pair (𝑛,𝑑):
i. Choose 𝑋 uniformly at random and compute𝑀 = 𝑋𝑇𝑋 .
ii. Use Gurobi’s free Python package API (see below) to find a binary matrix �̃� such that

�̃�𝑇 �̃� = 𝑀 .
iii. Check if �̃� and 𝑋 are the same up to re-ordering of the rows. (How can you check this

quickly?).
For each setting of 𝑛 and 𝑑 , record the fraction of times that the experiment led to exact
reconstruction.

(c) Do the results of Part 4b and 4a agree? Why or why not?
(d) (*, optional for glory) Gurobi’s exact solver is too slow to solve this problem meaningfully

for larger dimensions, at least on my laptop. Design a heuristic that scales to 𝑑 and 𝑛 in the
hundreds, and carry out the experiment with 𝑛 = 200 and different settings of 𝑑 . For what
values of 𝑑 does your heuristic reconstruct the data exactly with reasonable probability (say at
least 5% of the time)?

What to submit: You should submit a report answering the questions above, with your code attached
as an appendix. (You have to submit a PDF on Gradescope, so you’ll have to “print” your code to
PDF and concatenate the two PDF files.)

Gurobi: To get Gurobi up and running, you will need to install it. This web page has instructions
on getting Gurobi installed and up and running. I will also distribute an example Python notebook
that might be helpful. As for the optional problem... feel free to use any standard Python packages.
Your code should runnable on a typical laptop or PC. (For 𝑛 = 12 and 𝑑 = 12, my use of Gurobi was
taking under 5–10 minutes to run all 20 trials.)

4

https://support.gurobi.com/hc/en-us/articles/17278438215313-Tutorial-Getting-Started-with-the-Gurobi-Python-API

