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Conclusions

Statistical analysis guarantees that your
conclusions generalize to the population



Statistical Practice
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ESSAY VIEWS CITATIONS

Why Most Published Research Findings Are False

John P. A. loannidis

Published: August 30, 2005 « DOI: 10.1371/journal.pmed.0020124

The Statistical Crisis in Science

Andrew Gelman and Eric Loken



Statistical Practice

Method

¥

Sample

¥

Conclusions

Statistical guarantees no longer apply
when the method and sample are correlated



Examples of Adaptive Data Analysis

Well specified adaptive algorithms

Select features then fit a model (Freedman’s Paradox)
Hyperparameter tuning (sometimes)
Data science competitions

Hyperparameter
tuning &
Model
Training training
data
Historical

data e
- - ‘ Validation

Validation results
data

Alice Zheng. “Evaluating Machine Learning Models.”



Examples of Adaptive Data Analysis

Researcher degrees of freedom

The interaction effect is not significant when the scale from the Danish study are used
to gauge the US subjects’ support for redistribution. This arises because two of the
items are somewhat unreliable in a US context. Hence, for items 5 and 6, the inter-item
correlations range from as low as .11 to .30. These two items are also those that express
the idea of European-style market intervention most clearly and, hence, could sound
odd and unfamiliar to the US subjects. When these two unreliable items are removed
(a after removal = .72), the interaction effect becomes significant.

A. Gelman, E. Loken. “The Garden of Forking Paths.”
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Examples of Adaptive Data Analysis

Reuse of datasets by multiple researchers
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Case Study: ML Competitions

> secret validation Classifier ¢ Data Gladiator

data X
Z1 s1=0
zZ,  s;=1 Repeat times
Z3 s3=1
Zn  Sp=1 Answer a
| 4
a ~feorex(p)= 7> 1pG) = s} = Ex (1) = )
l
where @ is a classifier Goal: design a method for }
estimating the score
Competition: find a classifier ¢* on the prize data

with large score on the prize data

]

scorep (@) = Ep(1{p(z;) = s;})
score on the prize data Secret Prize Same distribution as
W‘i \‘ 0M> Data P Validation data



Case Study: ML Competitions -
e Suppose prize and validation data hav(andom labels

* Any classifier will have scorep (@) =~ —on the prize data

* If scorey () > Ethen we have overfit

 How can we prevent the competitors from overfitting to the
validation data?

* Naive algorithm:

. answei a = scorey (@) = %Zi 1{p(z;) = S?\

* Let’s see how well this algorithm does at preventing overfitting




Non-adaptive analysis -
* Competitor’s strategy@ptive):

* Choose k random classifiers ¢4, ..., @y

* Receive ay, ..., a; where a; = scorex(¢;)

* Output ¢* = argmax scorey (¢, )

0.57 [number of samPIes (n) = 10001 |
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— significance
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Overfitting with adaptive analysis -

* Competitor’s strategy (adaptive):

* Choose k — 1 random classifiers ¢4, ..., @ _1

Receive scores a4, ..., A _1

 Define ¢, (z) = sign (Zj (aj —
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Theorem (adaptive attack on

raw scores):
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E(scx(px) — scp(pp)) = Q
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What Happened in This Example?



Case Study: ML Competitions -

* Improved estimator: Add Gaussian noise N(0,c%) to the
estimated score of each classifier

* Give answers q; = scorex(goj) + N(0,02)




Case Study: ML Competitions -

* Improved estimator: Add Gaussian noise N(0,c%) to the
estimated score of each classifier

* Give answers q; = scorex(goj) + N(0,02)

e The best choice of g is not 0!

4 . n = 1000k = 100
No noise: 06 | | | |

overestimate
score by =0.10
I\

[ — average reported corr

4 .
Some noise:

overestimate
score by =0.06
I\

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
noise scale (sigma) =



Case Study: ML Competitions

* Improved estimator: Add Gaussian noise N(0, 0%) to+k-

estimated score of each classifier 'V““i?iZFe/Eﬂ
o=/ ,
* Give answers q; = scorex(cpj) + N(0,02) ach|evmg \7a|ue
 The best choice of g is not 0! k E
SR U ALY
Theorem [DFHPRR’15, BNSSSU’16]: for appropriate a > 0,
vk
E [max — scorep(cp])u < —+ o
\ %

* Compare to 0( k/n)wheno =20
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Proof Overview

/

o

~
Key Claim: If M’ is an (&, §)-DP mechanism that maps X to a classifier,

then Ey y[scorey(M'(X))| — Ex y[scorep(M'(X))] = O(e + 8) « =

How will we use this?

X — | M Z_:IO\”>

Sco €, () »> SW"?@@

B, TosT-PROCESSING (v\ /{ is (,8)-DP.
‘1 p /('( 1S (E $)~j>?



Proof Overview

/

o

Key Claim: If M’ is an (&, §)-DP mechanism that maps X to a classifier,
then IEX,M[scoreX(M’(X))] — Ex p[scorep(M'(X))] = O(e + 6)

\

J

* Proof Sketch:

* Consider (i, Xl-,M’(X)) and (i, Z, M’(X)) where i ~ [n],
X ~ P™, Z ~ P independently, and M’ is the mechanism

(i, X;, M' (X))
~es (LX, M'(Z]1X2)) Differential Privacy
= (4,2, M'(X:11X-) Symmetry

= (i, Z,M'(X))



Proof Overview

/

.

Key Claim: If M’ is an (&, §)-DP mechanism that maps X to a classifier,
then IEX,M[scoreX(M’(X))] — Ex p[scorep(M'(X))] = O(e + 6)

\

J

* Proof Sketch:
* Consider (i, Xl-,M’(X)) and (i, Z, M’(X)) where i ~ [n],
X ~ P, Z ~ P independently, and M is the mechanism
* Sub-claim: (i, X;, M'(X)) =~.5 (i,Z, M'(X))
* Observe that
* By [scorey (M'(X))] = E (£ (i, M'(X)))
o Ey ylscore,(M'(X))] = E (f(i,Z,M’(X)))
* Where f(i,x,m) =

* Fact: If A, B € [0,1] satisfy A ~, 5 B, then
E(A) < e®E(B) + 6.




What happens with Many Queries?
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Transfer Theorem

/I'heorem: Let M be an (&, §)-DP mechanism for answering a \
sequence of k queries that is accurate on the sample, i.e.,

Pr (mjax|aj — Scorex(cpj)| < 0() >1-p0.

Then it is also accurate on the population:

k Pr(m]ax|aj — scorep(goj)| <a+c¢ +\/,§+ \/E) =1 —\/,E—\/g. j

This result is sufficient to analyze the Gaussian mechanism.
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