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Inference with DP

• Inference vs computation
• Confidence intervals

ØEstimating the bias of a coin

• Confidence intervals from complex algorithms
ØEstimating median from the binary-tree CDF

• Bootstrap-based approaches
• Topics not covered
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Inference versus computing a function

• American Community Survey
Ø Covers ≈ 1% of the US population per year
Ø Includes “ancestry, citizenship, educational attainment, income, 

language proficiency, migration, disability, employment, and 
housing characteristics”

• Meant to inform us about the population as a whole
Ø Sample itself is not of interest

3



Statistical inference

• Goal: Figure out something about 𝑃
ØGood classifier
ØEstimate for some parameter of 𝑃

• Confidence interval: plausible range for the parameter

ØTest if 𝑃 satisfies some hypothesis
• E.g. smoking and lung cancer are independent
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Two Settings
1. Externally specified mechanism

ØCensus is using “TopDown”
ØHow can social scientists draw inferences?

2. Algorithm design
ØWhat mechanisms make inference easy?
ØAre they good enough?
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Theories of Inference

• Bayesian [lots of work]
Ø Posit a prior 𝑄 on the data distribution 𝑃
Ø Given 𝑎 = 𝐴!(𝑋), compute conditional distribution on 𝑓 𝑃

Pr
"∼$
%∼&!

𝑓 𝑃 = 𝜃 𝑎 = 𝐴! 𝑋

• Incorporates all randomness, supports all inference tasks J
• Often computationally hard L
• Limited by prior. Social scientists suspicious L

• Frequentist [today]
Ø Example: Find function 𝐶𝐼: 𝑎 → [𝑙𝑜𝑤, ℎ𝑖𝑔ℎ] such that 

∀𝑃 ∈ 𝒫: Pr
'∼&!

𝑓 𝑃 ∈ 𝐶𝐼 𝐴! 𝑋 ≈ 0.95
• Often computationally simpler J
• Correctness is often brittle L
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Today: Two specific problems
• Estimating a coin’s bias (Bernoulli)

Ø𝐵(𝑝): Output &1 w. p. 𝑝
0 w. p. 1 − 𝑝

ØGiven 𝑋!, … , 𝑋" ∼##$ 𝑃 = 𝐵 𝑝

• Median
Ø𝑋!, … . , 𝑋" ∼##$ 𝑃 on [0,1] with CDF 𝐹

ØWant 𝑤 such that 𝐹 𝑤 = !
%

(or inf 𝑤: 𝐹 𝑤 ≥ !
%

)
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Bernoulli parameter estimation
• Say 𝑋!, … , 𝑋" ∼ 𝐵𝑒𝑟𝑛(𝑝) so each 𝑋# ∈ {0,1}
• We want an interval for 𝑝
• A frequentist confidence interval is an algorithm

Ø Input: 𝑥!, … , 𝑥" and parameter 𝛽 ∈ (0,1)
ØOutput: 𝑎, 𝑏

Two goals
• Validity/coverage: for all 𝑝 ∈ [0,1]:

Pr
𝑿%('!,…,'")∼,(-)

#.#./.

𝑝 ∈ 𝑎 𝑿 , 𝑏 𝑿 ≥ 1 − 𝛽

• Size: Want 𝑏 − 𝑎 as small as possible
ØE.g. in expectation
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Bernoulli parameter estimation
• Say 𝑋!, … , 𝑋" ∼ 𝐵𝑒𝑟𝑛(𝑝) so each 𝑋# ∈ {0,1}
• Validity/coverage: for all 𝑞 ∈ [0,1]:

Pr
𝑿'()!,…,)")∼.(/)

#.#.$.

𝑝 ∈ 𝑎 𝑿 , 𝑏 𝑿 ≥ 1 − 𝛽

Typical strategy for parametric estimation: Given 𝒙,
1. Compute �̅� = !

"
∑#'!" 𝑥#

2. Let 𝑎 𝒙 = min 𝑞: Pr
1!,…,1"∼. 2

#.#.$.

M𝑌 > �̅� ≥ 3
%

𝑏 𝒙 = max 𝑞: Pr
1!,…,1"∼. 2

#.#.$.

M𝑌 < �̅� ≥ 3
%

In practice, often use upper bounds on tail probabilities
• Looser bounds lead to larger intervals
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Validity
Proof:
• Two ways to be invalid: either 𝑝 < 𝑎 𝑿 or 𝑝 > 𝑏 𝑿
• Look at Pr

)∼##$ . /
𝑝 < 𝑎 𝑿

Ø Recall 𝑎 �⃗� = min 𝑞: Pr
!!,…,!"∼% &

'.'.).

,𝑌 > �̅� ≥ *
+

QED
Same proof works if we use upper bound on tails

Ø E.g. Chernoff bounds, or 
CLT: ,𝑋 ≈ 𝑍 where 𝑍 ∼ 𝑁 𝑝, , -.,

/
. Ok for 𝑛 ≫ -

, -.,
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Validity (with proof filled in)
Proof:
• Two ways to be invalid: either 𝑝 < 𝑎 𝑿 or 𝑝 > 𝑏 𝑿
• Look at Pr

)∼##$ . /
𝑝 < 𝑎 𝑿

Ø Recall 𝑎 �⃗� = min 𝑞: Pr
!!,…,!"∼% &

'.'.).

,𝑌 > �̅� ≥ *
+

Ø If 𝑝 < 𝑎(𝑿) then Pr
!!,…,!"∼% ,

'.'.).

,𝑌 > �̅� < *
+

• By definition!

• Similarly, probability that 𝑝 > 𝑏 𝑿 is at most 3
%
. QED

Same proof works if we use upper bound on tails
Ø E.g. Chernoff bounds, or 

CLT: ,𝑋 ≈ 𝑍 where 𝑍 ∼ 𝑁 𝑝, , -.,
/

. Ok for 𝑛 ≫ -
, -.,
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General strategy
• Sampling distribution of a statistic 𝑔(𝑿) for 

distribution 𝑃 is the distribution you observe in the 
sample.

• General approach: look how sampling distribution 
might have given rise to observed value
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Sampling distribution 
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𝑿~ ##$ 𝐵(0.4) and 
𝑛 = 200



DP Confidence Intervals
• Given 𝒙 = 𝑥!, … , 𝑥" ∈ 0,1 ",

Run existing DP algorithm 𝑀(𝒙) to approximate �̅�
ØExample: 𝑀 𝒙 = �̅� + 𝑍 where 𝑍 ∼ 𝐿𝑎𝑝 !

4"

• How should we compute a confidence interval for 𝑝?
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Sampling distributions 
of M𝑋 and 𝑀(𝑿)
where 𝑿~ ##$ 𝐵(0.4)
and 𝑛 = 200
and 𝜖 = 0.1



DP confidence intervals
• Approach #1: 

ØGiven 𝑚 = 𝑀 𝒙 = �̅� + 𝑍 where 𝑍 ∼ 𝐿𝑎𝑝 !
4"

ØLet 𝑎 𝑚 = min 𝑞: Pr
1!,…,1"∼. 2

#.#.$.

M𝑌 ≥ 𝑚 ≥ 3
%

𝑏 𝑚 = max 𝑞: Pr
1!,…,1"∼. 2

#.#.$.

M𝑌 ≤ 𝑚 ≥ 3
%

• Multiple choice: This approach produces
a) Valid intervals that are wider than they need to be
b) Valid intervals that are narrower than they need to 

be
c) Invalid intervals because they are too wide
d) Invalid intervals because they are too narrow 
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DP confidence intervals
• Approach #2: 

Ø Given 𝑚 = 𝑀 𝒙 = �̅� + 𝑍 where 𝑍 ∼ 𝐿𝑎𝑝 (
!)

Ø Let 𝑎 𝑚 = min 𝑞: Pr
*",…,*!∼- .

/./.1.

𝑀 𝒀 ≥ 𝑚 ≥ 2
3

𝑏 𝑚 = max 𝑞: Pr
*",…,*!∼- .

/./.1.

𝑀 𝒀 ≤ 𝑚 ≥ 2
3

• This approach is correct, but not obviously the best
Ø In fact, adding integer version of Laplace is slightly better [GRS’08]

• Approximating Pr
!4,…,!5∼% &

'.'.).

𝑀 𝒀 ≥ 𝑚 can be tricky

Ø Loose overestimates lead to wide intervals
Ø Loose underestimates yield invalid intervals
Ø General approach: sampling
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Asymptotics
• Central Limit Theorem: when 𝑝 fixed and 𝑛 → ∞, 

𝑀 𝑿 − 𝑝
𝑝 1 − 𝑝 𝑛

→0 𝑁 0,1

just like E𝑋.
ØSo 𝑀(𝑋) is “as good as” M𝑋 for statistical purposes as 𝑛 → ∞

• But when we do inference, we have a finite sample
ØWe need to adjust for added noise
ØFor large 𝑛, the adjustment is small

• We can quantify the cost in terms of …
Ø Interval width of private v. nonprivate methods (for same 𝑛)
Ø Increase in sample size needed (for same expected width)
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Comparing sample sizes
• Bernoulli: For given confidence, intervals have width

Ø Nonprivate with 𝑛 samples: roughly  2 𝑧(62/3 ⋅
(

8 (68 )
where 𝑧(62/3 is the 1 − 𝛽/2 quantile of 𝑁(0,1)

Ø Private with 𝑛9 samples: roughly 2 𝑧(62/3 ⋅
(

8 (68 )#
+ 3

!)# $
• (This assumes Laplace behaves roughly like Normal)

Ø Solving for 𝑛9 to get the same width 𝛼, for constant 𝑝: 
𝑛9 = 𝑛 + Θ

1
𝜖3

• (Exercise J)

• For most models, we at best get statements of the form
𝑛* = Θ(𝑛+,+-.'/012 + 𝑓 𝜖, 𝛼 )

Ø Example: For Gaussian mean with known covariance 

𝑛9 = cΘ
𝑑
𝛼3

+
𝑑
𝜖𝛼

Ø Open question for many models!
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General points
• Adjustments above were possible only because we 

knew an exact description of 𝑀
ØNeeded to compute Pr

1!,…,1"∼. 2
#.#.$.

𝑀 𝒀 ≥ 𝑚

• Until 2010, Census methods for adding distortion were 
confidential 
ØUsers had to make inferences by taking estimates at face 

value

• Move to publicly described methods has caused 
controversy
ØMany did not understand distortion was added at all
ØNew distortion is often larger than previously added
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Inference with DP

• Inference vs computation
• Confidence intervals

ØEstimating the bias of a coin

• Confidence intervals from complex algorithms
ØEstimating median from the binary-tree CDF

• Bootstrap-based approaches
• Topics not covered
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Median
• 𝑋!, … . , 𝑋" ∼##/ 𝑃 on [0,1] with CDF 𝐹

• Median: 𝑤 such that 𝐹 𝑤 = !
1

(or inf 𝑤: 𝐹 𝑤 ≥ !
1

)

• We’ve seen DP algorithms for median

ØExp. Mech.         Pr 𝑌 = 𝑦 ∝ exp − 𝑟𝑎𝑛𝑘𝒙(𝑦) −
"
%

ØCDF tree estimator
• Extract an estimate for median by looking where the estimated CDF 

crosses above ½

Ø (also MWEM)

• What problems will we get? 
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Nonprivate CI’s for median
• Let’s first solve the problem without DP…

Ø Let 𝐹 be the CDF of 𝑃 and 𝑚∗ be its true median
Ø Let 𝐹𝒙 be the CDF of the sample

• Find two quantiles 𝑞6, 𝑞7 that contain the 
median with probability 1 − 𝛽. 

𝑞6 = sup 𝑞: Pr
𝑿∼##$8

(𝐹𝑿 𝑚∗ ≤ 𝑞) ≤
𝛽
2

= sup 𝑞: Pr
1∼.#" ",!%

M𝑌 ≤ 𝑞 ≤
𝛽
2

Ø 𝑞2 is similar

• Given 𝒙 with CDF 𝐹𝒙, return 
𝑎 𝒙 = 𝐹𝒙6! 𝑞6 and
𝑏 𝒙 = 𝐹𝒙6!(𝑞7)
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Using the CDF estimator
• Approach 1: For each 𝑤, find a confidence interval for 𝑤’s quantile in the 

sample
Ø Possible because we understand Gaussian noise for each 𝑥
Ø 𝑎 = smallest value whose CI includes 𝑞#

• Approach 2: For each 𝑤, find a confidence interval for 𝑤’s quantile in the 
distribution
Ø Possible because we understand Gaussian noise for each 𝑥 and 

estimating the CDF at 𝑤 can be viewed as Bernoulli estimation
Ø 𝑎 = smallest value whose CI includes 1/2
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Inference with DP

• Inference vs computation
• Confidence intervals

ØEstimating the bias of a coin

• Confidence intervals from complex algorithms
ØEstimating median from the binary-tree CDF

• Bootstrap-based approaches
• Topics not covered
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Direct Estimation of Sampling 
Distribution
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Sampling Distribution

• Goal: CI for 𝑓(𝑃) from 𝐴2(𝑋)

• Intermediate goal: understand sampling distribution 
𝐺 𝑃, 𝑛, 𝜖

of 𝐴2(𝑋)
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X 𝐴!
Population

𝑃
data method

𝑓(𝑋)𝑓(𝑃)

h𝑓(𝑃)

𝜃 = 𝑓(𝑃)

density of 
𝐺 𝑃, 𝑛, 𝜖



𝑘 datasets of size 𝑛
with replacement

Direct Estimation of Sampling Distribution
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𝑃

𝑘 datasets of 
size 𝑛/𝑘

𝑋!
𝑋%

𝑋:
𝑋;

𝑋 𝐴4

𝐴4/ ;
𝐴4/ ;

𝐴4/ ;
𝐴4/ ;

Subsample and 
aggregate
(smaller 𝑛)
[NRS’07, 
S’11,
Evans, King ‘18, 
Covington, He, 
Honaker, Kamath ‘21]

𝑃 data

𝑋

𝑋!
𝑋%

𝑋:
𝑋;

Bootstrap 
samples of 
same size
(smaller 𝜖)
[Brawner-
Honaker 18]

Samples from 
𝐺 𝑃), 𝑛,

4
;

processed 
nonprivately

Samples from 
𝐺 𝑃, "

;
, +∞

processed 
privately



Direct Estimation of Sampling Distribution

• Idea: 

ØAssume a specific form for 𝐺 𝑃, "
;
, +∞ [e.g. Gaussian, 𝜒%]

ØFocus on estimation for distributions of that form

• Simple and sound J
• Highly specific and data-hungry L
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𝑃

𝑘 datasets of 
size 𝑛/𝑘

𝑋!
𝑋%

𝑋:
𝑋;

𝑋 𝐴4

Samples from 
𝐺 𝑃, "

;
, +∞

processed 
privately

Subsample and 
aggregate
(smaller 𝑛)
[NRS’07, 
S’11,
Evans, King ‘18, 
Covington, He, 
Honaker, Kamath ‘21]



𝑘 datasets of size 𝑛
with replacement

Direct Estimation of Sampling Distribution

• Booststrap theory suggests 

𝐺 𝑃', 𝑛,
𝜖
𝑘

≈ 𝐺 𝑃, 𝑛,
𝜖
𝑘

• If noise is additive, then infer mean and variance of 
𝐺 𝑃, 𝑛, 𝜖
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𝑃 data

𝑋

𝑋!
𝑋%

𝑋:
𝑋;

𝐴4/ ;
𝐴4/ ;

𝐴4/ ;
𝐴4/ ;

Samples from 
𝐺 𝑃), 𝑛,

4
;

processed 
nonprivately

Bootstrap 
samples of 
same size
(smaller 𝜖)
[Brawner-
Honaker 18]



Model-based Bootstrap
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“Model-based” Bootstrap

• What do we do in higher-dimensional settings?
• Many differentially private algorithms implicitly model the population

Ø CDF estimators, synthetic data generators, …
• Heuristic: Use estimated model as basis for sampling distribution 

[Ferrando, Wang, Sheldon ‘21, Neunhoeffer, Sheldon, S. ‘22]
Ø If +𝑃 ≈ 𝑃, then maybe 𝐺 +𝑃, 𝑛, 𝜖 ≈ 𝐺 𝑃, 𝑛, 𝜖
Ø Requires continuity of the sampling distribution
Ø For now, heuristic
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X !
data method

!" # ≈ !(#)
#' ≈ #

X !
data method

!" # ≈ !(#)
#' ≈ #

X !
data method

!" # ≈ !(#)
#' ≈ #

⋮

C.I. for =𝜃 P use 
quantiles of

=𝜃%∗, … , =𝜃'∗

≈ quantiles of 
𝐺( =𝑃, 𝑛, 𝜖)

X 𝐴

Population 𝑃 data method
=𝜃 𝑃 ≈ 𝜃(𝑃)

=𝑃 ≈ 𝑃

o𝜃!∗

o𝜃%∗

o𝜃;∗
X !

Population ! data method
"# ! ≈ "(!)
!# ≈ !



Example: Nonparametric Medians
• Two univariate distributions

ØMixture of two normals
ØADULT age data set (𝑃= empirical distribution)

• Multivariate examples in progress
So far…
• Accurate coverage

ØBut treating output naively undercovers
ØStill trying to find “bad” examples

• Narrower intervals than exact, conservative method
[Drechsler, Globus-Harris, McMillan, Sarathy, S., 22]
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Bimodal data
• Sampling distributions 
𝐺 2𝑃, 𝑛, 𝜖 highly skewed
• Estimates 2𝜃'∗ are 

Ø Highly mean-biased in weird ways
Ø Median-unbiased

• (NB: “Pivot method” fails)
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ADULT age data
• Works well
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Sampling distributions, n=1000



Topics we did not cover
• Hypothesis tests and 𝑝-values

ØBasis for peer-review standards in many sciences

• Bayesian statistical approaches
• In “traditional” ML

ØCalibration of class probability estimates
ØValidity of prediction sets (set that contains correct class 

with high probability)

• Causal inference
• Data re-use
• Fairness to small subpopulations
• …
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