BU CS599 Foundations of Private Data Analysis Spring 2023

Lecture 22: Inference and DP

Jonathan Ullman NEU Adam Smith BU

Inference with DP

- Inference vs computation
- Confidence intervals

Estimating the bias of a coin

Confidence intervals from complex algorithms

Estimating median from the binary-tree CDF

- Bootstrap-based approaches
- Topics not covered

Inference versus computing a function

American Community Survey

- \blacktriangleright Covers $\approx 1\%$ of the US population per year
- Includes "ancestry, citizenship, educational attainment, income, language proficiency, migration, disability, employment, and housing characteristics"

• Meant to inform us about the population as a whole

Sample itself is not of interest

Statistical inference

- Goal: Figure out something about *P*
 - Good classifier
 - \succ Estimate for some parameter of P
 - Confidence interval: plausible range for the parameter
 - \succ Test if *P* satisfies some hypothesis
 - E.g. smoking and lung cancer are independent

Two Settings

I. Externally specified mechanism

➤ Census is using "TopDown"

> How can social scientists draw inferences?

2. Algorithm design

> What mechanisms make inference easy?

> Are they good enough?

Theories of Inference

• Bayesian [lots of work]

 \succ Posit a prior Q on the data distribution P

- ➢ Given a = A_ε(X), compute conditional distribution on f(P) $\Pr_{P \sim Q} (f(P) = θ | a = A_ε(X))$ $X \sim Pⁿ$
 - Incorporates all randomness, supports all inference tasks $\ensuremath{\textcircled{\odot}}$
 - Often computationally hard $\ensuremath{\mathfrak{S}}$
 - Limited by prior. Social scientists suspicious $\ensuremath{\mathfrak{S}}$

Frequentist [today]

- ➤ Example: Find function CI: a → [low, high] such that
 ∀P ∈ P: $\Pr_{X \sim P^n} \left(f(P) \in CI(A_{\epsilon}(X)) \right) \approx 0.95$
 - Often computationally simpler 🙂
 - Correctness is often brittle 🔅

Today: Two specific problems

• Estimating a coin's bias (Bernoulli)

$$> B(p): \text{Output} \begin{cases} 1 & \text{w.p.} & p \\ 0 & \text{w.p.} & 1 - p \\ > \text{Given } X_1, \dots, X_n \sim_{iid} P = B(p) \end{cases}$$

Parametric estimation

 \bigcirc

 $F X_1, \dots, X_n \sim_{iid} P \text{ on } [0,1] \text{ with CDF } F$ $F Want w \text{ such that } F(w) = \frac{1}{2}$ $(\text{or inf}\left\{w: F(w) \ge \frac{1}{2}\right\})$

Bernoulli parameter estimation

- Say $X_1, \ldots, X_n \sim Bern(p)$ so each $X_i \in \{0, 1\}$
- We want an interval for p
- A frequentist confidence interval is an algorithm
 - ▷ Input: x_1 , ..., x_n and parameter $\beta \in (0,1)$
 - \succ Output: a, b
- Two goals
- Validity/coverage: for all $p \in [0,1]$: $\Pr_{\substack{X=(X_1,\ldots,X_n)\sim B(p)\\ i.i.d.}} (p \in [a(X), b(X)]) \ge 1 - \beta$
- Size: Want b a as small as possible

 \succ E.g. in expectation

Bernoulli parameter estimation

- Say $X_1, \dots, X_n \sim Bern(p)$ so each $X_i \in \{0, 1\}$
- Validity/coverage: for all $q \in [0,1]$:

$$\Pr_{\substack{X=(X_1,\ldots,X_n)\sim B(p)\\i.i.d.}} (p \in [a(X), b(X)]) \ge 1 - \beta$$

Typical strategy for parametric estimation: Given x,

1. Compute
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

2. Let $a(x) = \min \begin{cases} q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\bar{Y} < \bar{x}) \ge \frac{\beta}{2} \end{cases}$
 $b(x) = \max \begin{cases} q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\bar{Y} < \bar{x}) \ge \frac{\beta}{2} \end{cases}$

In practice, often use upper bounds on tail probabilities

Looser bounds lead to larger intervals

Validity

Proof:

• Two ways to be invalid: either p < a(X) or p > b(X)

• Look at
$$\Pr_{\vec{X} \sim iid B(p)} \left(p < a(X) \right)$$

> Recall $a(\vec{x}) = \min \left\{ q : \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} > \overline{x}) \ge \frac{\beta}{2} \right\}$

QED Same proof works if we use upper bound on tails

E.g. Chernoff bounds, or
CLT:
$$\overline{X} \approx Z$$
 where $Z \sim N\left(p, \frac{p(1-p)}{n}\right)$. Ok for $n \gg \frac{1}{p(1-p)}$

Validity (with proof filled in)

Proof:

• Two ways to be invalid: either p < a(X) or p > b(X)

• Look at
$$\Pr_{\vec{X} \sim iid B(p)} \left(p < a(X) \right)$$

> Recall $a(\vec{x}) = \min \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\bar{Y} > \bar{x}) \ge \frac{\beta}{2} \right\}$
> If $p < a(X)$ then
$$\Pr_{\substack{Y_1, \dots, Y_n \sim B(p) \\ i.i.d.}} (\bar{Y} > \bar{x}) < \frac{\beta}{2}$$

• By definition!

• Similarly, probability that p > b(X) is at most $\frac{\beta}{2}$. QED

Same proof works if we use upper bound on tails

➢ E.g. Chernoff bounds, or
CLT: X̄ ≈ Z where Z ~ N(p,
$$\frac{p(1-p)}{n}$$
). Ok for n ≫ $\frac{1}{p(1-p)}$

General strategy

• Sampling distribution of a statistic g(X) for distribution P is the distribution you observe in the sample.

Sampling distribution of \overline{X} where $X \sim_{(iid)} B(0.4)$ and n = 200

 General approach: look how sampling distribution might have given rise to observed value

DP Confidence Intervals

• Given $x = (x_1, ..., x_n) \in \{0,1\}^n$, Run existing DP algorithm M(x) to approximate \bar{x}

Example:
$$M(\mathbf{x}) = \bar{\mathbf{x}} + Z$$
 where $Z \sim Lap\left(\frac{1}{\epsilon n}\right)$

How should we compute a confidence interval for p?

DP confidence intervals

• Approach #I:

Given $m = M(x) = \overline{x} + Z$ where $Z \sim Lap\left(\frac{1}{\epsilon n}\right)$

Let
$$a(m) = \min \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} \ge m) \ge \frac{\beta}{2} \right\}$$
$$b(m) = \max \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (\overline{Y} \le m) \ge \frac{\beta}{2} \right\}$$

- Multiple choice: This approach produces
- a) Valid intervals that are wider than they need to be
- b) Valid intervals that are narrower than they need to be
- c) Invalid intervals because they are too wide
- d) Invalid intervals because they are too narrow

DP confidence intervals

• Approach #2:

For
$$Finite Given m = M(x) = \bar{x} + Z$$
 where $Z \sim Lap\left(\frac{1}{\epsilon n}\right)$

Let
$$a(m) = \min \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (M(\mathbf{Y}) \ge m) \ge \frac{\beta}{2} \right\}$$
$$b(m) = \max \left\{ q: \Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (M(\mathbf{Y}) \le m) \ge \frac{\beta}{2} \right\}$$

- This approach is correct, but not obviously the best
 > In fact, adding integer version of Laplace is slightly better [GRS'08]
- Approximating $\Pr_{\substack{Y_1, \dots, Y_n \sim B(q) \\ i.i.d.}} (M(Y) \ge m)$ can be tricky
 - Loose overestimates lead to wide intervals
 - Loose underestimates yield invalid intervals
 - General approach: sampling

Asymptotics

• Central Limit Theorem: when p fixed and $n \to \infty$, $\frac{M(X) - p}{\sqrt{p(1-p)n}} \to_D N(0,1)$

just like \overline{X} .

 \succ So M(X) is "as good as" \overline{X} for statistical purposes as $n \to \infty$

• But when we do inference, we have a finite sample

> We need to adjust for added noise

 \succ For large n, the adjustment is small

• We can quantify the cost in terms of ...

 \succ Interval width of private v. nonprivate methods (for same n)

> Increase in sample size needed (for same expected width)

Comparing sample sizes

• Bernoulli: For given confidence, intervals have width

> Nonprivate with *n* samples: roughly $2 z_{1-\beta/2} \cdot \frac{1}{\sqrt{p(1-p)n}}$ where $z_{1-\beta/2}$ is the $1 - \beta/2$ quantile of N(0,1)

> Private with n' samples: roughly $2 z_{1-\beta/2} \cdot \sqrt{\frac{1}{p(1-p)n'} + \frac{\sqrt{2}}{(\epsilon n')^2}}$

• (This assumes Laplace behaves roughly like Normal)

> Solving for n' to get the same width α , for constant p:

$$n' = n + \Theta\left(\frac{1}{\epsilon^2}\right)$$

- (Exercise 🙂)
- For most models, we at best get statements of the form
 n' = Θ(n_{nonprivate} + f(ε, α))
 > Example: For Gaussian mean with known covariance

$$n' = \widetilde{\Theta}\left(\frac{d}{\alpha^2} + \frac{d}{\epsilon\alpha}\right)$$

Open question for many models!

General points

Adjustments above were possible only because we knew an exact description of M

▷ Needed to compute
$$\Pr_{\substack{Y_1,...,Y_n \sim B(q) \\ i.i.d.}} (M(Y) \ge m)$$

- Until 2010, Census methods for adding distortion were confidential
 - Users had to make inferences by taking estimates at face value
- Move to publicly described methods has caused controversy
 - > Many did not understand distortion was added at all
 - > New distortion is often larger than previously added

Inference with DP

- Inference vs computation
- Confidence intervals

Estimating the bias of a coin

Confidence intervals from complex algorithms

Estimating median from the binary-tree CDF

- Bootstrap-based approaches
- Topics not covered

Median

- $X_1, \ldots, X_n \sim_{iid} P$ on [0,1] with CDF F
- Median: w such that $F(w) = \frac{1}{2}$ (or $\inf\left\{w: F(w) \ge \frac{1}{2}\right\}$)
- We've seen DP algorithms for median

Exp. Mech.
$$\Pr(Y = y) \propto \exp\left(-\left|rank_x(y) - \frac{n}{2}\right|\right)$$

- CDF tree estimator
 - Extract an estimate for median by looking where the estimated CDF crosses above $^{1\!/_{2}}$
- ≻ (also MWEM)
- What problems will we get?

Nonprivate CI's for median

- Let's first solve the problem without DP...
 Let F be the CDF of P and m* be its true median
 Let F_x be the CDF of the sample
- Find two quantiles q_-, q_+ that contain the median with probability 1β .

$$q_{-} = \sup \left\{ q: \Pr_{X \sim_{iid} P}(F_X(m^*) \le q) \le \frac{\beta}{2} \right\}$$
$$= \sup \left\{ q: \Pr_{Y \sim_{Bin}\left(n, \frac{1}{2}\right)}(\overline{Y} \le q) \le \frac{\beta}{2} \right\}$$

 \succ q_+ is similar

• Given x with CDF F_x , return $a(x) = F_x^{-1}(q_-)$ and $b(x) = F_x^{-1}(q_+)$

Using the CDF estimator

- Approach I: For each *w*, find a confidence interval for *w*'s quantile in the sample
 - \succ Possible because we understand Gaussian noise for each x
 - \succ a = smallest value whose CI includes q_{-}
- Approach 2: For each w, find a confidence interval for w's quantile in the distribution
 - Possible because we understand Gaussian noise for each x and estimating the CDF at w can be viewed as Bernoulli estimation
 - \succ a = smallest value whose CI includes 1/2

Inference with DP

- Inference vs computation
- Confidence intervals

Estimating the bias of a coin

Confidence intervals from complex algorithms

Estimating median from the binary-tree CDF

- Bootstrap-based approaches
- Topics not covered

Direct Estimation of Sampling Distribution

Sampling Distribution

- Goal: Cl for f(P) from $A_{\epsilon}(X)$
- Intermediate goal: understand sampling distribution $G(P, n, \epsilon)$

Direct Estimation of Sampling Distribution

Direct Estimation of Sampling Distribution

• Idea:

> Assume a specific form for $G\left(P, \frac{n}{k}, +\infty\right)$ [e.g. Gaussian, χ^2]

Focus on estimation for distributions of that form

- Simple and sound ^(C)
- Highly specific and data-hungry ☺

Direct Estimation of Sampling Distribution

Booststrap theory suggests

$$G\left(\frac{P_X}{\sqrt{k}}, n, \frac{\epsilon}{\sqrt{k}}\right) \approx G\left(\frac{P}{\sqrt{k}}, n, \frac{\epsilon}{\sqrt{k}}\right)$$

• If noise is additive, then infer mean and variance of $G(P, n, \epsilon)$

Model-based Bootstrap

"Model-based" Bootstrap

- What do we do in higher-dimensional settings?
- Many differentially private algorithms implicitly model the population
 CDF estimators, synthetic data generators, ...
- Heuristic: Use estimated model as basis for sampling distribution [Ferrando, Wang, Sheldon '21, Neunhoeffer, Sheldon, S. '22]

▶ If
$$\tilde{P} \approx P$$
, then maybe $G(\tilde{P}, n, \epsilon) \approx G(P, n, \epsilon)$

Requires continuity of the sampling distribution

Example: Nonparametric Medians

- Two univariate distributions
 - Mixture of two normals
 - > ADULT age data set (P = empirical distribution)
- Multivariate examples in progress

So far...

Accurate coverage

> But treating output naively undercovers

> Still trying to find "bad" examples

• Narrower intervals than exact, conservative method [Drechsler, Globus-Harris, McMillan, Sarathy, S., 22]

Sampling distributions, n=1000

Topics we did not cover

- Hypothesis tests and p-values
 - > Basis for peer-review standards in many sciences
- Bayesian statistical approaches
- In "traditional" ML
 - Calibration of class probability estimates
 - Validity of prediction sets (set that contains correct class with high probability)
- Causal inference
- Data re-use
- Fairness to small subpopulations