BU CS591 S1 Foundations of Private Data Analysis Spring 2023

Lecture 01: Introduction

Adam Smith BU

- Course Intro
- A taste of the syllabus
 - Attacks on information computed from private data
 - > A first private algorithm: randomized response

This Course

- Intro to research on privacy in ML and statistics
 - Mathematical models
 - How do we formulate nebulous concepts?
 - How do we assess and critique these formulations?
 - > Algorithmic techniques
- Skill sets you will work on
 - Theoretical analysis
 - > Critical reading of research literature in CS and beyond
 - Programming

Prerequisites

- Comfort writing proofs about probability, linear algebra, algorithms
- > MS/undergrads: discuss your background with instructor.

Administrivia

- Web page: https://dpcourse.github.io/2023-spring/
 - Communication via Piazza
 - Lectures on Gather
 - Course work on Gradescope
- Your jobs
 - > Lecture preparation, attendance, participation
 - > Homework
 - > Project

Coursework

- Lecture prep and in-class work
- Homework
 - Due Fridays every 2 weeks
 - Limited collaboration is permitted
 - Groups of size ≤ 4
 - Academic honesty: You must
 - Acknowledge collaborators (or write "collaborators: none")
 - Write your solutions yourself, and be ready to explain them orally
 - Rule of thumb: walk away from collaboration meetings with no notes.
 - Use only course materials (except for reading general background, e.g., on probability, calculus, etc)
- Project (details TBA)
 - Read and summarize a set of 2-3 related papers
 - Identify open questions
 - Develop new material (application of a technique to a new data set, work on open question, show some assumption is necessary, ...)
 - Presentation in last week of class

For flipped classroom lectures

- Ahead of time
 - ➤ Watch video
 - Engage actively and take notes by hand as you watch
 - Read lecture notes
 - > Answer Gradescope pre-class questions
- In class
 - Be present
 - Let us know on Piazza if that is an issue in general or for specific lectures. Default is attendance at every class
 - Actively participate in problem-solving
 - Problems will be posted ahead of time
 - Take notes on your work
- After class
 - Submit your notes (photo or electronic) on Gradescope

For traditional lectures

- In class
 - Be present
 - Let us know on Piazza if that is an issue in general or for specific lectures. Default is attendance at every class
 - Bring questions
 - Actively participate in problem-solving and feedback questions
- After class
 - > Work on the homework!

To do list for this week

- Make sure you have access to Piazza, Gradescope
- Read the syllabus
- By Tuesday:
 Fill background survey (to be posted; see Piazza)
 Watch videos, read notes, answer questions for Lecture 2

- Course Intro
- A taste of the syllabus
 - Attacks on information computed from private data
 - > A first private algorithm: randomized response

Data are everywhere

 Decisions increasingly automated using rules based on personal data

- Census data used to apportion congressional seats
 Think about citizenship question
- Also enforce Voting Rights Act, allocate Title I funds, design state districts, ...

Machine learning on your devices

Statistical models trained using data from your phones

Statistical models trained from other personal data

Machine learning on your devices

- Statistical models trained using data from your phones
 - Offer sentence completion
 - Convert voice to speech
 - Select, for you and others to see,
 - Content (e.g. FB newsfeed)
 - Ads
 - Recommendations for products ("You might also like...")
- Statistical models trained from other personal data
 - > Advise judges' bail decisions
 - > Allocate police resources
 - Advise doctors on diagnosis/treatment

Privacy in Statistical Databases

Large collections of personal information

- census data
- medical/public health
- social networks
- education

Statistical analysis benefits society

Valuable because they reveal so much about our lives

Two conflicting goals

- Utility: release aggregate statistics
- **Privacy**: individual information stays hidden

How do we define "privacy"?

- Studied since 1960's in
 - ➢ Statistics
 - Databases & data mining
 - Cryptography

This course section: Rigorous foundations and analysis

First attempt: Remove obvious identifiers

- Everything is an identifier
- Attacker has external information
- "Anonymization" schemes are regularly broken

"Al recognizes blurred faces" [McPherson Shokri Shmatikov '16]

[Ganta Kasiviswanathan S '08]

Reidentification attack example

[Narayanan, Shmatikov 2008]

Alice Bob Charlie Danielle Erica Frank

Anonymized NetFlix data

On average, four movies uniquely identify user

```
Identified NetFlix Data
```

Is the problem granularity?

What if we only release aggregate information?

Problem I: Models leak information

- Support vector machine output reveals individual data points
- Deep learning models reveal even more

Models Leak Information

Somali 👻	¢ [→]	English 👻		Somali 👻	, →	English 👻	
ag ag ag ag ag ag ag ag	ag ag ag	And its ler one hundr at one end	ed cubits	ag ag ag ag ag ag ag	g ag ag ag ag ag	And they came to b the valley by the va	

Models can leak information about training data in unexpected ways

- Example: Smart Compose in Gmail
 - \succ Haven't seen you in a while.

Hope you are doing well

John Doe's SSN is 920-24-1930 [Carlini et al. 2018]

Modern deep learning algorithms often "memorize" inputs

[Carlini et al. 20]

Current language models memorize irrelevant information.

Is the problem granularity?

What if we only release aggregate information?

Problem I: Models leak information

Problem 2: Statistics together may encode data

- Example: Average salary before/after resignation
- More generally:

Too many, "too accurate" statistics reveal individual information

- Reconstruction attacks
 - Reconstruct all or part of data
- Membership attacks
 - Determine if a target individual is in (part of) the data set

Cannot release everything everyone would want to know

Differential privacy

Differential Privacy

- Robust notion of "privacy" for algorithmic outputs
 Meaningful in the presence of arbitrary side information
- Several current deployments

Apple


```
Google
```


US Census

Burgeoning field of research

Algorithms Crypto, security

Statistics, learning

Game theory, economics

Databases, programming languages

Law, policy

Differential Privacy

• Data set
$$x = (x_1, \dots, x_n) \in \mathcal{X}$$

 \succ Domain $\mathcal X$ can be numbers, categories, tax forms

Think of x as fixed (not random)

• A = **probabilistic** procedure

> A(x) is a random variable

> Randomness might come from adding noise, resampling, etc.

Differential Privacy

A thought experiment

> Change one person's data (or add or remove them)

A First Algorithm: Randomized Response

Randomized Response (Warner 1965)

 Say we want to release the proportion of diabetics in a data set

Each person's data is I bit: $x_i = 0$ or $x_i = 1$

- Randomized response: each individual rolls a die
 - \succ I, 2, 3 or 4: Report true value x_i
 - > 5 or 6: Report opposite value $1 x_i$
- Output is list of reported values Y_1, \dots, Y_n

> It turns out that we can estimate fraction of x_i 's that are 1 when n is large

Randomized Response

i	x_i	Die roll	Y _i
1	0	5	yes
2	1	1	yes
3	1	3	yes
4	1	2	yes
5	0	6	yes
6	0	4	no
7	1	2	yes
8	0	3	no
9	1	2	yes
10	1	5	no
	10	0 3	no

What sort of privacy does this provide?

• Many possible answers

One approach: Plausible deniability

- $> x_{10}$ could have been 0
- $> x_8$ could have been 1
- Suppose we fix everyone else's data $x_1, \ldots, x_9...$

What is

$$\frac{\Pr(Y_{10} = no | x_{10} = 1)}{\Pr(Y_{10} = no | x_{10} = 0)}$$
?

Differential Privacy

A thought experiment

> Change one person's data (or add or remove them)

Plausible deniability and RR

A bit more generally...

- Fix any data set $\vec{x} \in \{0,1\}^n$, and any neighboring data set \vec{x}'
 - \succ Let *i* be the position where $x_i \neq x'_i$
 - \succ (Recall $x_j = x'_j$ for all $j \neq i$)
- Fix an output $\vec{a} \in \{0,1\}^n$

$$\Pr(A(\vec{x}) = \vec{a}) = \left(\frac{2}{3}\right)^{\#\{j:x_j = a_j\}} \left(\frac{1}{3}\right)^{\#\{j:x_j \neq a_j\}}$$

(because decisions made independently)

• When we change one output, one term in the product changes (from $\frac{2}{3}$ to $\frac{1}{3}$ or vice versa)

• So
$$\frac{\Pr(A(\vec{x})=\vec{a})}{\Pr(A(\vec{x}')=\vec{a})} \in \left\{\frac{1}{2}, 2\right\}.$$

Recall basic probability facts

• Random variables have expectations and variances

$$\mathbb{E}(X) = \sum_{x} x \cdot \Pr(X = x)$$
$$Var(X) = \mathbb{E}\left(\left(X - \mathbb{E}(X)\right)^{2}\right)$$

- Expectations are linear: For any rv's $X_1, ..., X_n$ and constants $a_1, ..., a_n$: $\mathbb{E}\left(\sum_{i} a_i X_i\right) = \sum_{i} a_i \mathbb{E}(X_i)$
- Variances add over independent random variables. If X_1, \ldots, X_n are independent, then

$$Var\left(\sum_{i} a_{i}X_{i}\right) = \sum_{i} a_{i}^{2}Var(X_{i})$$

• The standard deviation is $\sqrt{Var(X_i)}$

Exercise 1: sums of random variables

- Say $X_1, X_2, ..., X_n$ are independent with, for all i, $\mathbb{E}(X_i) = \mu$ $\sqrt{Var(X_i)} = \sigma$
- Then what are the expectation and variance of the average $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$?

a)
$$\mathbb{E}(\overline{X}) = \mu n \text{ and } \sqrt{Var(\overline{X})} = n\sigma$$

b) $\mathbb{E}(\overline{X}) = \mu \text{ and } \sqrt{Var(\overline{X})} = \sigma$
c) $\mathbb{E}(\overline{X}) = \mu \text{ and } \sqrt{Var(\overline{X})} = \sigma/\sqrt{n}$
d) $\mathbb{E}(\overline{X}) = \mu \text{ and } \sqrt{Var(\overline{X})} = \frac{\sigma}{n}$
e) $\mathbb{E}(\overline{X}) = \mu/n \text{ and } \sqrt{Var(\overline{X})} = \frac{\sigma}{n}$

Exercise 2: Estimating $\sum_i x_i$ *from RR*

• Show there is a procedure which, given Y_1, \dots, Y_n , produces an estimate A such that Standard definition of the standard def

Standard deviation of estimate

$$\int \mathbb{E} \left(A - \sum_{i=1}^{n} x_i \right)^2 = O(\sqrt{n}).$$

Equivalently, $\sqrt{\mathbb{E} \left(\frac{A}{n} - \overline{X} \right)^2} = O\left(\frac{1}{\sqrt{n}} \right)$

> Hint: What are the mean and variance of $3Y_i - 1$?

Randomized response for other ratios

• Each person has data $x_i \in \mathcal{X}$

> Normally data is more complicated than bits

• Tax records, medical records, Instagram profiles, etc

 \succ Use \mathcal{X} to denote the set of possible records

- Analyst wants to know sum of φ: X → {0,1} over x
 ≻ Here φ captures the property we want to sum
 ≻ E.g. "what is the number of diabetics?"
 - $\varphi((Adam, 168 \, lbs., 17, not \, diabetic)) = 0$
 - $\varphi((Ada, 142 \ lbs., 47, diabetic)) = 1$
 - We want to learn $\sum_{i=1}^{n} \varphi(x_i)$

For each person i, $Y_i = R(\boldsymbol{\varphi}(x_i))$

Ratio is e^{ϵ} (think $1 + \epsilon$ for small ϵ)

• Randomization operator takes $z \in \{0,1\}$: $R(z) = \begin{cases} z & w. p. \frac{e^{\epsilon}}{e^{\epsilon}+1} \\ 1-z & w. p. \frac{1}{e^{\epsilon}+1} \end{cases}$ Ratio is e^{ϵ}

Randomized response for other ratios

- Each person has data $x_i \in \mathcal{X}$
 - → Analyst wants to know sum of φ : $X \rightarrow \{0,1\}$ over x
- Randomization operator takes $z \in \{0,1\}$:

$$R(\mathbf{z}) = \begin{cases} \mathbf{z} & w.p.\frac{e^{\epsilon}}{e^{\epsilon}+1} \\ 1 - \mathbf{z} & w.p.\frac{1}{e^{\epsilon}+1} \end{cases}$$

How can we estimate a proportion?

 $\succ A(x_1,\ldots,x_n)$:

- For each *i*, let $Y_i = R(\varphi(x_i))$
- Return $A = \sum_i (aY_i b)$

 \succ What values for a, b make $\mathbb{E}(A) = \sum_{i} \varphi(x_i)$?

We can do much better than this! Coming up ...

• **Proposition:** $\sqrt{\mathbb{E}(A - \sum_{i} \varphi(x_{i}))^{2}} = \frac{e^{\epsilon/2}}{e^{\epsilon} - 1} \sqrt{n}. \approx \frac{2\sqrt{n}}{\epsilon}$ when ϵ small

