BU CS591 S1

Foundations of Private Data Analysis

$$
\text { Spring } 2023
$$

Lecture 01: Introduction

Adam Smith
BU

Today

- Course Intro
- A taste of the syllabus
$>$ Attacks on information computed from private data
- A first private algorithm: randomized response

This Course

- Intro to research on privacy in ML and statistics
$>$ Mathematical models
- How do we formulate nebulous concepts?
- How do we assess and critique these formulations?
$>$ Algorithmic techniques
- Skill sets you will work on
$>$ Theoretical analysis
$>$ Critical reading of research literature in CS and beyond
$>$ Programming
- Prerequisites
$>$ Comfort writing proofs about probability, linear algebra, algorithms
$>$ MS/undergrads: discuss your background with instructor.

Administrivia

- Web page: https://dpcourse.github.io/2023-spring/
$>$ Communication via Piazza
$>$ Lectures on Gather
> Course work on Gradescope
- Your jobs
$>$ Lecture preparation, attendance, participation
$>$ Homework
$>$ Project

Coursework

- Lecture prep and in-class work
- Homework
$>$ Due Fridays every 2 weeks
$>$ Limited collaboration is permitted
- Groups of size ≤ 4
$>$ Academic honesty: You must
- Acknowledge collaborators (or write "collaborators: none")
- Write your solutions yourself, and be ready to explain them orally
- Rule of thumb: walk away from collaboration meetings with no notes.
- Use only course materials (except for reading general background, e.g., on probability, calculus, etc)
- Project (details TBA)
- Read and summarize a set of 2-3 related papers
- Identify open questions
- Develop new material (application of a technique to a new data set, work on open question, show some assumption is necessary, ...)
- Presentation in last week of class

For flipped classroom lectures

- Ahead of time
$>$ Watch video
- Engage actively and take notes by hand as you watch
$>$ Read lecture notes
$>$ Answer Gradescope pre-class questions
- In class
$>$ Be present
- Let us know on Piazza if that is an issue in general or for specific lectures. Default is attendance at every class
$>$ Actively participate in problem-solving
- Problems will be posted ahead of time
$>$ Take notes on your work
- After class
$>$ Submit your notes (photo or electronic) on Gradescope

For traditional lectures

- In class
$>$ Be present
- Let us know on Piazza if that is an issue in general or for specific lectures. Default is attendance at every class
$>$ Bring questions
$>$ Actively participate in problem-solving and feedback questions
- After class
$>$ Work on the homework!

To do list for this week

- Make sure you have access to Piazza, Gradescope
- Read the syllabus
- By Tuesday:
$>$ Fill background survey (to be posted; see Piazza)
$>$ Watch videos, read notes, answer questions for Lecture 2

Today

- Course Intro
- A taste of the syllabus
$>$ Attacks on information computed from private data
- A first private algorithm: randomized response

Data are everywhere

- Decisions increasingly automated using rules based on personal data

- Census data used to apportion congressional seats
$>$ Think about citizenship question
- Also enforce Voting Rights Act, allocate Title I funds, design state districts, ...

Machine learning on your devices

- Statistical models trained using data from your phones
- Statistical models trained from other personal data

Machine learning on your devices

- Statistical models trained using data from your phones
> Offer sentence completion
> Convert voice to speech
> Select, for you and others to see,
- Content (e.g. FB newsfeed)
- Ads
- Recommendations for products ("You might also like...")
- Statistical models trained from other personal data
> Advise judges' bail decisions
> Allocate police resources
> Advise doctors on diagnosis/treatment

Privacy in Statistical Databases

Individuals
 Researchers

Large collections of personal information

- census data
- medical/public health
- social networks
- education

Statistical analysis benefits society

Valuable because they reveal so much about our lives

Two conflicting goals

- Utility: release aggregate statistics
- Privacy: individual information stays hidden

Utility

Privacy

How do we define "privacy"?

- Studied since I960's in
$>$ Statistics
$>$ Databases \& data mining
$>$ Cryptography
- This course section: Rigorous foundations and analysis

First attempt: Remove obvious identifiers

"Al recognizes blurred faces" [McPherson Shokri Shmatikov 'I6]

- Everything is an identifier
- Attacker has external information
- "Anonymization" schemes are regularly broken

[Ganta Kasiviswanathan S '08]

Reidentification attack example

[Narayanan, Shmatikov 2008]

Anonymized NetFlix data

Public, incomplete IMDB data

Alice
Bob
Charlie
Danielle Erica
Frank

On average, four movies uniquely identify user

Identified NetFlix Data

Is the problem granularity?

What if we only release aggregate information?

Problem I: Models leak information

- Support vector machine output reveals individual data points

- Deep learning models reveal even more

Models Leak Information

Somali •	$\stackrel{\text { English }}{ }$
ag ag ag ag ag ag ag	
ag ag ag	And its length was one hundred cubits at one end

Somali	\leftarrow	English
ag	And they came to be at the gates of the valley by the valley by the valley	

Models can leak information about training data in unexpected ways

- Example: Smart Compose in Gmail
> Haven't seen you in a while.
Hope you are doing well
$>$ John Doe's SSN is 920-24-1930
[Carlini et al. 2018]
- Modern deep learning algorithms often "memorize" inputs
\qquad

[Carlini et al. 20]
Current language models memorize irrelevant information.

Is the problem granularity?

What if we only release aggregate information?
Problem I: Models leak information

Problem 2: Statistics together may encode data

- Example: Average salary before/after resignation
- More generally:

Too many, "too accurate" statistics reveal individual information
> Reconstruction attacks

- Reconstruct all or part of data
$>$ Membership attacks
- Determine if a target individual is in (part of) the data set

> Cannot release everything everyone would want to know

Differential privacy

Differential Privacy

- Robust notion of "privacy" for algorithmic outputs
$>$ Meaningful in the presence of arbitrary side information
- Several current deployments

Apple

Google

US Census

- Burgeoning field of research

Algorithms

Statistics,
learning

Game theory, economics

Databases, programming languages

Law, policy

Differential Privacy

- Data set $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X}$
$>$ Domain \mathcal{X} can be numbers, categories, tax forms
$>$ Think of x as fixed (not random)
- $A=$ probabilistic procedure
$>A(x)$ is a random variable
$>$ Randomness might come from adding noise, resampling, etc.

Differential Privacy

- A thought experiment
$>$ Change one person's data (or add or remove them) $>$ Will the probabilities of outcomes change?

For any set of outcomes, (e.g. I get denied health insurance) about the same probability in both worlds

A First Algorithm: Randomized Response

Randomized Response (Warner 1965)

- Say we want to release the proportion of diabetics in a data set
$>$ Each person's data is I bit: $x_{i}=0$ or $x_{i}=1$
- Randomized response: each individual rolls a die
$>$ I, 2, 3 or 4: Report true value x_{i}
>5 or 6: Report opposite value $1-x_{i}$

- Output is list of reported values Y_{1}, \ldots, Y_{n}
$>$ It turns out that we can estimate fraction of x_{i} 's that are 1 when n is large

Randomized Response

i	x_{i}	Die roll	Y_{i}
1	0	5	yes
2	1	1	yes
3	1	3	yes
4	1	2	yes
5	0	6	yes
6	0	4	no
7	1	2	yes
8	0	3	no
9	1	2	yes
10	1	5	no

What sort of privacy does this provide?

- Many possible answers

One approach: Plausible deniability
$>x_{10}$ could have been 0
$>x_{8}$ could have been 1

- Suppose we fix everyone else's data $x_{1}, \ldots, x_{9} \ldots$
- What is

$$
\frac{\operatorname{Pr}\left(Y_{10}=n o \mid x_{10}=1\right)}{\operatorname{Pr}\left(Y_{10}=n o \mid x_{10}=0\right)} ?
$$

Differential Privacy

- A thought experiment
$>$ Change one person's data (or add or remove them) $>$ Will the probabilities of outcomes change?

For any set of outcomes, (e.g. I get denied health insurance) about the same probability in both worlds

Plausible deniability and RR

A bit more generally...

- Fix any data set $\vec{x} \in\{0,1\}^{n}$, and any neighboring data set \vec{x}^{\prime}
$>$ Let i be the position where $x_{i} \neq x_{i}^{\prime}$
$>\left(\right.$ Recall $x_{j}=x_{j}^{\prime}$ for all $\left.j \neq i\right)$
- Fix an output $\vec{a} \in\{0,1\}^{n}$

$$
\operatorname{Pr}(A(\vec{x})=\vec{a})=\left(\frac{2}{3}\right)^{\#\left\{j: x_{j}=a_{j}\right\}}\left(\frac{1}{3}\right)^{\#\left\{j: x_{j} \neq a_{j}\right\}}
$$

(because decisions made independently)

- When we change one output, one term in the product changes (from $\frac{2}{3}$ to $\frac{1}{3}$ or vice versa)
- So $\frac{\operatorname{Pr}(A(\vec{x})=\vec{a})}{\operatorname{Pr}(A(\vec{x})=\vec{a})} \in\left\{\frac{1}{2}, 2\right\}$.

Recall basic probability facts

- Random variables have expectations and variances

$$
\begin{aligned}
& \mathbb{E}(X)=\sum_{x} x \cdot \operatorname{Pr}(X=x) \\
& \operatorname{Var}(X)=\mathbb{E}\left((X-\mathbb{E}(X))^{2}\right)
\end{aligned}
$$

- Expectations are linear: For any rv's X_{1}, \ldots, X_{n} and constants a_{1}, \ldots, a_{n} :

$$
\mathbb{E}\left(\sum_{i}^{\mu_{n}} a_{i} X_{i}\right)=\sum_{i} a_{i} \mathbb{E}\left(X_{i}\right)
$$

- Variances add over independent random variables. If X_{1}, \ldots, X_{n} are independent, then

$$
\operatorname{Var}\left(\sum_{i} a_{i} X_{i}\right)=\sum_{i} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)
$$

- The standard deviation is $\sqrt{\operatorname{Var}\left(X_{i}\right)}$

Exercise 1: sums of random variables

- Say $X_{1}, X_{2}, \ldots, X_{n}$ are independent with, for all i,

$$
\begin{aligned}
& \mathbb{E}\left(X_{i}\right)=\mu \\
& \sqrt{\operatorname{Var}\left(X_{i}\right)}=\sigma
\end{aligned}
$$

- Then what are the expectation and variance of the average $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$?
a) $\mathbb{E}(\bar{X})=\mu n$ and $\sqrt{\operatorname{Var}(\bar{X})}=n \sigma$
b) $\mathbb{E}(\bar{X})=\mu$ and $\sqrt{\operatorname{Var}(\bar{X})}=\sigma$
c) $\mathbb{E}(\bar{X})=\mu$ and $\sqrt{\operatorname{Var}(\bar{X})}=\sigma / \sqrt{n}$
d) $\mathbb{E}(\bar{X})=\mu$ and $\sqrt{\operatorname{Var}(\bar{X})}=\frac{\sigma}{n}$
e) $\mathbb{E}(\bar{X})=\mu / n$ and $\sqrt{\operatorname{Var}(\bar{X})}=\frac{\sigma}{n}$

Exercise 2: Estimating $\sum_{i} x_{i}$ from $R R$

- Show there is a procedure which, given Y_{1}, \ldots, Y_{n}, produces an estimate A such that

Standard deviation of estimate

Equivalently, $\sqrt{\mathbb{E}\left(\frac{A}{n}-\bar{X}\right)^{2}}=O\left(\frac{1}{\sqrt{n}}\right)$
$>$ Hint: What are the mean and variance of $3 Y_{i}-1$?

Randomized response for other ratios

- Each person has data $x_{i} \in \mathcal{X}$
$>$ Normally data is more complicated than bits
- Tax records, medical records, Instagram profiles, etc
$>$ Use \mathcal{X} to denote the set of possible records
- Analyst wants to know sum of $\varphi: \mathcal{X} \rightarrow\{0,1\}$ over \boldsymbol{X}
$>$ Here φ captures the property we want to sum
$>$ E.g. "what is the number of diabetics?"
- $\varphi(($ Adam, 168 lbs., 17, not diabetic $))=0$
- $\varphi(($ Ada, 142 lbs., 47, diabetic $))=1$
- We want to learn $\sum_{i=1}^{n} \varphi\left(x_{i}\right)$

For each person i,

$$
\left.\left.\begin{array}{l}
\text { - Randomization operator takes } z \in\{0,1\}: \quad Y_{i}=R\left(\varphi\left(x_{i}\right)\right) \\
Z \\
\text { w.p. } \frac{e^{\epsilon}}{e^{\epsilon}+1} \\
1-z \\
\text { w.p. } \frac{1}{e^{\epsilon}+1}
\end{array}\right\} \text { Ratio is } e^{\epsilon} \text { (think } 1+\epsilon \text { for small } \epsilon\right)
$$

Randomized response for other ratios

- Each person has data $x_{i} \in \mathcal{X}$
$>$ Analyst wants to know sum of $\varphi: \mathcal{X} \rightarrow\{0,1\}$ over \boldsymbol{x}
- Randomization operator takes $z \in\{0,1\}$:

$$
R(z)= \begin{cases}z & \text { w.p. } \frac{e^{\epsilon}}{e^{\epsilon}+1} \\ 1-z & w \cdot p \cdot \frac{1}{e^{\epsilon}+1}\end{cases}
$$

- How can we estimate a proportion?
$>A\left(x_{1}, \ldots, x_{n}\right)$:
- For each i, let $Y_{i}=R\left(\varphi\left(x_{i}\right)\right)$
- Return $A=\sum_{i}\left(a Y_{i}-b\right)$
\Rightarrow What values for a, b make $\mathbb{E}(A)=\sum_{i} \varphi\left(x_{i}\right)$? Coming up ...
- Proposition: $\sqrt{\mathbb{E}\left(A-\sum_{i} \varphi\left(x_{i}\right)\right)^{2}}=\frac{e^{\epsilon / 2}}{e^{\epsilon}-1} \sqrt{n} . \approx \frac{2 \sqrt{n}}{\epsilon}$ when ϵ small

