
Privacy in Statistics and Machine Learning Spring 2023
Lecture 13 & 14: Factorization and Projection Mechanisms

Adam Smith (based on materials developed with Jonathan Ullman)

So far we’ve talked about linear query release as a natural and important problem that captures
many of the things a data collector would want to do with a sensitive dataset. However, with the lone
exception of the binary tree mechanism, we haven’t seen interesting algorithms for this problem except
for adding Laplace or Gaussian noise calibrated to sensitivity. In the next couple of lectures we’re going
to do more of a deep dive on this problem and see a variety of exciting algorithms for query release.
In this lecture we’ll focus on a natural framework for query-release algorithms based on two ideas for
reducing the error factorization and projection. These two tools are often combined in a particular way,
leading to what is called the matrix mechanism, which itself is the starting point for the US Census
Bureau’s algorithm for the 2020 Decennial Census. That term and a particular instantiation of this
approach originated in [?], the general approach has been studied in a number of concrete instantiations
in many dierent papers [?, ?, ?, ?] and we’ll focus on introducing a general class of mechanisms that
captures a lot of these specic instantiations.

1 Query Release Recap and Histograms

We’re going to start by recapping the problem of linear query release and then introduce a dierent
viewpoint on the problem that will be useful for developing the framework. Recall that we start with a
dataset x = (𝑥1, . . . , 𝑥𝑛) ∈ U𝑛 and we are given a set of linear statistics 𝑓1, . . . , 𝑓𝑘 where each query is of
the form

𝑓𝑖 (x) =
1
𝑛

𝑛∑︁
𝑗=1

𝜑𝑖 (𝑥 𝑗) for some 𝜑𝑖 : U → {0, 1} (1)

Before we go on, let’s note a small dierences between this formulation and what’ve said before: We
now normalize the queries so that we compute the average of 𝜑 𝑗 (𝑥𝑖) = 1 rather than the sum. Because
we have dened dierential privacy only for datasets of size 𝑛, we can think of 𝑛 as “public” and can
freely convert between the two notations without any implications for privacy. Normalizing is largely
just a cosmetic dierence, but it will make some of the concepts in future lectures easier to understand,
and it’s important not to forget about it in order to map what we say in this lecture to previous lectures.

Recall that our baseline algorithm for query release is the Gaussian mechanism, where we add
noise from a Gaussian distribution with noise scaled to the global ℓ2-sensitivity: Given a set of queries
𝑓1, . . . , 𝑓𝑘 , dene the function

𝐹 (x) = (𝑓1(x), . . . , 𝑓𝑘 (x)) (2)

and dene the Gaussian mechanism

M(x) = 𝐹 (x) + Z where Z ∼ N(0, 𝜎2I𝑘×𝑘) (3)

where the noise variance 𝜎2 has the form 𝜎2 = 𝑐2
Y,𝛿
Δ2
2 where

Δ2 = max
𝑥∼𝑥′∈U𝑛

‖𝐹 (x) − 𝐹 (x′)‖2 ≤
2
𝑛
·max
𝑢∈U

‖𝐹 (𝑢)‖2 ≤
2
√
𝑘

𝑛
(4)

1

is the global ℓ2 sensitivity of the set of statistics, and 𝑐2Y,𝛿 ≈ log(1/𝛿)
Y2 is some scaling factor that depends only

on the privacy parameters, which we will suppress because the dependence on the privacy parameters
themselves is not particularly interesting for this lecture.

For this lecture, we’re also going to make a small change in how we measure the error, which will
again make things a little easier going forward. Instead of asking for the error to be small for every
query, we’ll ask for it to be small for the average query. Specically, given answers 𝑎 = (𝑎1, . . . , 𝑎𝑘), we
want to have

1
𝑘1/2

‖𝐹 (x) − 𝑎‖2 =
(
1
𝑘

𝑘∑︁
𝑖=1

(𝑓𝑖 (x) − 𝑎𝑖)2
)1/2

≤ 𝛼 (5)

for as small an error 𝛼 as possible. Note that dividing by 1/
√
𝑘 allows us to put the error in the same

“units” as the maximum error over all queries. In other words, if the error for each query is at most 𝛼
then (5) is also at most 𝛼 .

For the Gaussian mechanism, we can say that the error will be

E

(
1

𝑘1/2
‖ 𝑓 (x) −M(x)‖2

)
= 𝑂

(
𝑐Y,𝛿Δ2

)
= 𝑂

(
𝑐Y,𝛿𝑘

1/2

𝑛

)
(6)

where we have used the fact that, for queries such as ours, Δ2 is never larger than 2
√
𝑘/𝑛.

This error rate of ≈
√
𝑘/𝑛 is what we think of as a baseline for any linear query release problem, and

is what we’re going to try to improve in this and the next several lectures.

Remark 1.1. Note that we are focusing on the Gaussian mechanism and (Y, 𝛿)-dierential privacy
because it gives better accuracy, let’s us work with the nicer Gaussian distribution, and avoid having two
parallel explanations of the same mechanism. Everything we are saying can be done with the Laplace
mechanism and (Y, 0)-dierential privacy without any signicant conceptual dierences.

1.1 The Histogram Representation: Putting the Linear in Linear Queries

OK, now that we did all that somewhat painful recapping, let’s do it all again in dierent notation!
The reason we want to switch notation is that it will allow us to express linear queries in the language
of—surprise, surprise—linear algebra.

To do so, we’ll start by dening the histogram representation of a dataset. Given a dataset x =

(𝑥1, . . . , 𝑥𝑛) ∈ U𝑛 , we can represent the dataset as a normalized histogram that tells us how many times
each element 𝑢 ∈ U appears in the dataset. Specically hx ∈ RU and is dened as

(hx)𝑢 =
#
{
𝑗 : 𝑥 𝑗 = 𝑢

}
𝑛

(7)

For example, ifU = {1, 2, 3} and x = (1, 3, 3, 2, 3) then hx = (15 ,
1
5 ,

3
5). Note that we can convert back and

forth between the dataset and the histogram,1 so they contain exactly the same information.

Remark 1.2. You may have noticed that the histogram can be huge even when the dataset is small.
For example, if 𝑛 = 2000 and U = {0, 1}30, then the dataset itself is just 60,000 bits (much less than a
megabyte), but the histogram representation has over a billion buckets (more than a gigabyte)! Thus, for
purposes of implementing algorithms in practice, we’d generally like to avoid switching to the histogram

1Strictly speaking, going from the histogram to the dataset loses information about the order of the items in the dataset,
but since the queries are symmetric and don’t depend on the order, we might as well think of the dataset as unordered anyway.

2

representation explicitlywhen implementing a mechanism, and think of it more as a tool for describing
mechanisms. The computational issues involved in the mechanisms we’re going to study are fascinating,
but for now we’re going to suppress them and focus only on the tradeo between privacy and accuracy
without thinking too hard about computation.

If we are going to design mechanisms in terms of the histogram, we need to understand what
happens to the histogram when we change one element of the original dataset. In particular, this can
change at most two buckets of the dataset by at most 1/𝑛 each. Thus we have that for every pair of
neighboring datasets of size 𝑛

‖hx − hx′ ‖1 ≤
2
𝑛

(8)

The reason we like to use the histogram representation is that we can nally make sense of the
term linear queries—the reason they are called linear is becaue they are a linear function of the dataset’s
histogram. Specically, given a single query 𝑓 dened by a predicate 𝜑 : U → {0, 1}, and U =

{𝑢1, 𝑢2, . . . , 𝑢𝑚}, we can write

𝑓 (x) = v · hx where v = (𝜑 (𝑢1), . . . , 𝜑 (𝑢𝑚)) (9)

Then, given a set of queries 𝑓1, . . . , 𝑓𝑘 , we can write

𝐹 (x) = Fhx where 𝐹𝑖, 𝑗 = 𝜑𝑖 (𝑢 𝑗) . (10)

Sometimes the hardest part of linear algebra is getting the dimensions right, so here we are writing hx
as an𝑚 × 1 column vector, and 𝐴 is a 𝑘 ×𝑚 matrix. Thus, the answers are a 𝑘 × 1 column vector whose
𝑖-th row is the answer to the 𝑖-th query.

Exercise 1.3. Convince yourself that I didn’t mess up the denitions (or tell me where I did).

Another thing to note is that, in this matrix representation, there is really nothing special about
having functions 𝜑 output values in {0, 1}, and in general we can think about queries that output real
numbers in R. Really the only advantage of having the queries output in {0, 1} is that we can get easy
baselines for the sensitivity and have some natural notion of what “good” error bound is.

1.2 The Gaussian Mechanism in the Histogram Representation

In this notation we can write the Gaussian mechanism in a completely equivalent way as

MF(x) = Fhx + Z where Z ∼ N(0, 𝜎2I𝑘×𝑘) (11)

Since we’re now expressing the queries as a matrix F, we’d like to be able to express their sensitivity Δ2
in a language that makes sense for this linear algebraic viewpoint, so let’s see how we can write the
sensitivity of linear algebra as follows:

Δ2 = max
𝑥∼𝑥′∈U𝑛

‖𝐹 (x) − 𝐹 (x′)‖2 (12)

= max
𝑥∼𝑥′∈U𝑛

‖F(hx − hx′)‖2 (13)

≤ max
h,h′∈R𝑚

‖h−h′‖1≤2/𝑛

‖F(hx − hx′)‖2 (14)

=
2
𝑛
· max

v∈R𝑚
‖v‖1≤1

‖Fv‖2 (15)

=
2
𝑛
· (largest ℓ2 norm of any column of F) = 2

𝑛
· ‖F‖1→2 (16)

3

where the notation ‖F‖1→2 is just some fancy notation for the largest ℓ2 norm of any column of F.2 To
make sure nothing magical is going on here, you can check that max𝑢∈U ‖𝐹 (𝑢)‖2 is just the largest
ℓ2-norm of any colum of F, so the calculation of the sensitivity in (4) is no dierent from (16) but in our
new notation. For keeping the notation reasonable, we’re going to use this fancy 2

𝑛
· ‖F‖1→2 notation to

denote the sensitivity of the queries, but it’s exactly the same as the ℓ2 sensitivity of the queries, so just
memorize that and don’t worry exactly what this funny notation is supposed to mean.

Given the above, we can set the variance of the noise to be 𝜎2 = 𝑐2
Y,𝛿

‖F‖21→2 and recover the same
error guarantee we had before, but in dierent notation.

E

(
1

𝑘1/2
‖Fhx −MF(x)‖2

)
= E

(
1

𝑘1/2
‖Z‖2

)
≤ 𝑂

(
𝑐Y,𝛿

‖F‖1→2
𝑛

)
(17)

To appreciate what we’ve all just been through, we have literally just changed the notation on
the Gaussian mechanism, so this is all a fancy way of explaining that we add noise to the queries
proportional to their ℓ2 sensitivity.

2 A Framework for Improving the Gaussian Mechanism

OK, we’re nally ready to see some ideas for improving the basic Gaussian mechanism. We’re going to
see three conceptually distinct ways of reducing the error, which can be mixed and matched with each
other. The rst two can both be viewed as taking advantage of dierent types of structure in the queries,
and the latter two is a form of post-processing of the Gaussian mechanism that can actually improve the
error of the Gaussian mechanism dramatically in some cases.

2.1 Factorization

The rst idea is called factorization, because we “factor” the mechanism into a dierentially private
measurement phase followed by a reconstruction phase that is just a postprocessing of what we measured.
To get a feel for the idea, let’s consider two special cases. First, suppose we are asked to answer the
exact same query 𝑘 times, so 𝑓1 = · · · = 𝑓𝑘 . Then, in our histogram representation, the query matrix will
be something like:

F =

1 1 0 0 1
1 1 0 0 1
1 1 0 0 1
1 1 0 0 1

 (18)

where each row is a copy of the same query. Notice that, as long as the query is not the all-zero function,
then the largest ℓ2 norm of any column will be exactly

√
𝑘 , so the Gaussian mechanism will add noise

proportional to
√
𝑘/𝑛. Clearly this is wasteful, because we’re really only answering a single query

with sensitivity 1/𝑛. In this example it’s clear what to do—use the Gaussian mechanism to answer just
the query 𝑓1, obtain an answer 𝑎, and then output the vector of 𝑘 answers (𝑎, . . . , 𝑎). Since we’re just
answering a single query, the error is proportional to 1/𝑛, which is what it should be.

Although this idea is simple enough, the general principle is that we are measuring a single query 𝑓1
and then performing a linear reconstruction of the answers to the remaining queries. The set of queries
we measure is described by a matrixM ∈ Rℓ×𝑚 and the reconstruction is described by another matrix

2If you’re curious, in general for 𝑝, 𝑞 > 0 we can dene the 𝑝 → 𝑞 operator norm of a matrix to be ‖F‖𝑝→𝑞 =

max‖v‖𝑝 ≤1 ‖F‖𝑞 . The 2 → 2 norm is the most common special case, and is equal to the largest singular value of F.

4

R ∈ R𝑘×ℓ . In the simple example above, the query we measure is just 𝑓1 and the reconstruction matrix
maps a number to the vector containing 𝑘 copies of that number. That is,

R =

1
1
1
1

 M =
[
1 1 0 0 1

]
(19)

All we are actually using here to make this a viable approach is the fact that RM = F. As long as we
have this, then our mechanism will have the form

MR,M(x) = R(Mhx + Z) = RMhx + RZ = Fhx + RZ (20)

In other words, we are just answering the queries F but with some alternative noise random variable RZ
rather than Z. Note that the Gaussian mechanism itself corresponds to the trivial factorization where
M = F and R = I, so in that sense factorization can only help and never hurt.

Exercise 2.1. Express the binary tree mechanism from Lecture 9 as an instance of factorization.
Specically, for the domainU = {1, . . . , 8}, and the set of threshold queries 𝑓𝑡 (x) = 1

𝑛
· #

{
𝑗 : 𝑥 𝑗 ≤ 𝑡

}
for

𝑡 = 1, . . . , 8, write the matrix F, the matrix M describing the set of queries in the binary tree, and the
matrix R describing how to reconstruct the answers to the threshold queries.

For a given factorization RM = F, what is the error of the mechanism? To answer this question, we
need to understand the quantity

E

(
1

𝑘1/2
‖Fhx −MR,M(x)‖2

)
− 1
𝑘1/2
E (‖RZ‖2) (21)

Recall that Z is from a Gaussian distribution where each coordinate is independent and has variance
𝜎2 = 𝑂 (𝑐2

Y,𝛿
‖M‖21→2/𝑛), so the lower the sensitivity ofM the smaller the magnitude of Zwill be. However,

multiplying by R can change the magnitude of the noise, and we need to understand what the noise is.
To this end, let’s write

R =

−r1−
...

−r𝑘−

 (22)

where each r𝑖 is a vector. Observe that when we compute the answer to the 𝑖-th query, we are actually
just computing r𝑖 (Mhx + Z), so the distribution of the noise for that query is just (RZ)𝑖 = r𝑖 · Z. Now
recall that if Z ∼ N(0, 𝜎2I), then r𝑖 · Z ∼ N(0, ‖r𝑖 ‖22𝜎2) is a univariate Gaussian. Thus we have

E
(
(RZ)2𝑖

)
= ‖r𝑖 ‖2𝜎2 (23)

5

and we have

E (‖RZ‖2) ≤ E
(
‖RZ‖22

)1/2
=

(
E

(
𝑘∑︁
𝑖=1

(RZ)2𝑖

))1/2
(24)

=

(
𝑘∑︁
𝑖=1
E

(
(RZ)2𝑖

))1/2
(25)

=

(
𝑘∑︁
𝑖=1

‖r𝑖 ‖22𝜎2

)1/2
(26)

= 𝜎

(
𝑘∑︁
𝑖=1

‖r𝑖 ‖22

)1/2
(27)

= 𝜎

(
𝑘∑︁
𝑖=1

ℓ∑︁
𝑗=1

R2
𝑖, 𝑗

)1/2
(28)

Note that the double sum in the nal quantity is the ℓ2 norm of the matrix if we ignore the fact that
it’s a matrix and treat it as a big vector of length 𝑘 × ℓ . This quantity has a name, and it’s called the
Frobenius norm of the matrix ‖R‖2

𝐹
=

∑
𝑖

∑
𝑗 R𝑖, 𝑗 . Thus, putting everything back together, we can write

E

(
1

𝑘1/2
‖Fhx −Mfact(x)‖2

)
− E (‖RZ‖2)

𝑘1/2
≤

𝑐Y,𝛿 ‖R‖F ‖M‖1→2

𝑘1/2𝑛
(29)

Since this might look like alphabet soup, let’s go back to our simple example fo repeating the
same query 𝑘 times from (37). In this case the query matrix itself has ‖F‖1→2 = 𝑘1/2, so the Gaussian
mechanism has error proportional to 𝑘1/2/𝑛. After we do the factorization we get a new measurement
matrix with ‖M‖1→2 = 1, and a reconstruction matrix with ‖R‖F = 𝑘1/2. Thus, when we plug this into
(29) we get that the error is proportional to 1/𝑛.

Lastly, notice that there can be many dierent pairs R,M such that RM = F, and of course we should
chose the one that gives us the best error! Since we can describe the best error as being proportional to
‖R‖F ‖M‖1→2/𝑘1/2, we can just choose the factorization that minimizes this error! We can actually give a
name to the quantity that represents the best error we can achieve via this framework—the factorization
norm of F.

Denition 2.2. Given a matrix F ∈ R𝑘×𝑚 , the factorization norm is dened as

𝛾 (F) = min
{
‖R‖F ‖M‖1→2

𝑘1/2
: RM = F

}
(30)

Using this notation, and considering the factorization mechanism that uses the optimal factorization
RM = F, we have the following theorem

Theorem 2.3. For every set of linear queries given by a matrix F ∈ R𝑘×𝑚 , there is an (Y, 𝛿)-dierentially
private mechanism M that answers these queries with error

E

(
1

𝑘1/2
‖Fhx −M(x)‖2

)
= 𝑂

(
𝑐Y,𝛿 · 𝛾 (F)

𝑛

)
(31)

6

2.2 Approximation

The next avenue for improvement is to give up on the constraint that RM = F. Suppose we run the
factorization mechanism with an approximate factorization where RM = F + E for some “small” matrix
E? In this more general setting we have

MR,M(x) = R(Mhx + Z) = Fhx + Ehx + RZ (32)

So now we have two sources of error: the noise vector RZ and the error due to approximation Ehx. Thus,
the overall error can now be bounded as follows

E

(
1

𝑘1/2
‖Ehx + RZ‖2

)
≤ ‖Ehx‖2

𝑘1/2
+ E (‖RZ‖2)

𝑘1/2
(33)

≤ ‖Ehx‖2
𝑘1/2

+
𝑐Y,𝛿 ‖R‖F ‖M‖1→2

𝑘1/2𝑛
(34)

≤ ‖E‖1→2

𝑘1/2
+
𝑐Y,𝛿 ‖R‖F ‖M‖1→2

𝑘1/2𝑛
(35)

where the rst inequality is the triangle inequality and linearity of expectation, the second inequality is
our analysis of the noise added by then factorization mechanism, and the nal inequality is our denition
of ‖E‖1→2 combined with the fact that ‖hx‖1 = 1. To interpret this analysis, note that if every entry of E
is bounded by 𝛼 in absolute value, then the additional error due to approximation is at most 𝛼 .

One (somewhat boring) example where this kind of approximation is useful is when the queries are
approximately the same but not identical. This can naturally arise if we allow the queries to take values
that are arbitrary real numbers instead of values in {0, 1}. For example, if the query matrix is

F =

1 ± 𝛼 1 ± 𝛼 1 ± 𝛼 1 ± 𝛼 1 ± 𝛼

1 ± 𝛼 1 ± 𝛼 1 ± 𝛼 1 ± 𝛼 1 ± 𝛼

1 ± 𝛼 1 ± 𝛼 1 ± 𝛼 1 ± 𝛼 1 ± 𝛼

 (36)

then we can use the approximate factorization

R =

1
1
1

 M =
[
1 1 0 0 1

]
(37)

to approximate this set of two queries as if it were a single query.

Remark 2.4. There are far more powerful examples of the benets of approximation, although explain-
ing how they work is beyond the scope of this lecture. But the punchline is that there are examples of
sets of 2𝑑 queries where exact factorizaton cannot get error 2𝑜 (𝑑)/𝑛, but approximate factorization can
get error .001 + 2𝑂 (

√
𝑑)/𝑛, which is an exponential improvement [?].

As above, we can choose the factorization R,M to optimize this error term, trading o the two
sources of error.

Denition 2.5. Given a matrix F ∈ R𝑘×𝑚 , the 𝛼-approximate factorization norm is dened as

𝛾𝛼 (F) = min
{
‖R‖F ‖M‖1→2

𝑘1/2
: ‖RM − F‖1→2 ≤ 𝛼𝑘1/2

}
(38)

7

Using this notation, and considering the factorization mechanism that uses the optimal factorization
RM = F + E subject to the constraint ‖E‖1→2 ≤ 𝛼𝑘1/2, we have the following theorem
Theorem 2.6. For every set of linear queries given by a matrix F ∈ R𝑘×𝑚 , and every 𝛼 ≥ 0, there is an
(Y, 𝛿)-dierentially private mechanismM that answers these queries with error

E

(
1

𝑘1/2
‖Fhx −M(x)‖2

)
= 𝑂

(
𝛼 +

𝑐Y,𝛿 · 𝛾𝛼 (F)
𝑛

)
(39)

2.3 Projection

Now we’re going to look at a very dierent approach to improve the error of the mechanism, albeit one
that can be combined seamlessly with the factorization approaches we just described. The approach can
be described most easily wtih an example: Suppose the data domain is U = {1, 2, 3} and we want to
answer the two non-trivial threhsold queries on a dataset inU𝑛 . Written in matrix notation, this gives
us the linear queries.

F =

[
1 0 0
1 1 0

]
(40)

Notice that by construction, if 𝑎∗1 and 𝑎∗2 are the true answers to the rst and second queries respectively,
then we must have 0 ≤ 𝑎∗1 ≤ 𝑎∗2 ≤ 1. However, when we add Gaussian noise to the answers, we will
obtain approximate answers 𝑎1 and 𝑎2 that may not satisfy these equations! In other words, we might
obtain inconsistent answers that are not the exact answers we would obtain from any real dataset.

We might not, in principle, care about having consistent answers,3 enforcing that the answers be
consistent with the exact answers on some dataset can actually improve the error—in some cases quite
dramatically (we’ll see how this can happen in the next lecture)!

For a simple, but again somewhat boring example, for any count query the true answer should lie in
the interval [0, 1]. If we let 𝑎∗ be the true answer and 𝑎 be our noisy answer, then the error is |𝑎∗ − 𝑎 |.
However, what if 𝑎 < 0, meaning 𝑎 cannot possibly by the correct answer? We’ll, clearly we can only
give a more accurate answer if we replace 𝑎 with 𝑎 = max{𝑎, 0}, and you can check that |𝑎∗ − 𝑎 | is never
larger than |𝑎∗ − 𝑎 | and can be smaller. Similarly, we can also let 𝑎 = max{min{𝑎, 1}, 0} to capture the
constraint that 0 ≤ 𝑎∗ ≤ 1.

[I will put a picture here later. For now, see the lecture video for a visualization.]

While this example might seem a little trivial, it’s a simple instance of a more general phenomenon.
Knowing only about the denition of the queries (not the data itself) we have a set of consistent answers
C that represents all possible correct answers. Specically

C =

{
a ∈ R𝑘 : ∃ h ∈ R𝑚 s.t. ‖h‖1 = 1 and a = Fh

}
(41)

Remark 2.7. If you’re astute, you’ll notice that the way we’ve dened C, it is not exactly the set of
all answers that can arise as the exact answers to some dataset of size 𝑛. The reason is that not every
histogram represents a dataset of size 𝑛. For example, if the query is a count, and 𝑛 = 2, then the only
possible answers are {0, 12 , 1}, whereas C = [0, 1]. It’s more precise to say that C is the convex hull of
the set of answers that are consistent with some dataset. Note, however, that every set of answers that
are consistent with a dataset of size 𝑛 lies in C, and every set of answers in C is consistent with those
given by some dataset of arbitrarily large size. Making C a convex set is useful for a number of reasons.

3One reason that you might actually want consistent answers is to make the noisy answers easier to use and interpret in
further applications. For example if you have a program that expects to be given as input the number of users born before
1980, that program might crash or give nonsensical answers if you tell it the answer is -1.82.

8

Given that we know the true answers that we’re looking for a∗ = Fhx are in the set C, we can
improve the error by projecting into C. That is, we dene the projection operator

ΠC (a) = argmin
a′∈C

‖a − a′‖2 (42)

and replace the answers a with ã = ΠC (a). There are two really important facts about the projected
answers ã:

• The error of ã is never larger than a, because the true answers a∗ are in C and C is a closed convex
set (see Lemma 2.2 in Lecture 12). That is

‖ã − a∗‖2 ≤ ‖a − a∗‖2 (43)

Notice that this inequality holds for every vector a. So, if a is a random variable then projection
can’t increase the expected ℓ2 error.

• If a was obtained with (Y, 𝛿)-dierential privacy, then ã = ΠC (a) is just a post-processing of a
that does not depend on the original dataset in any way, so the combined algorithm that returns ã
is also (Y, 𝛿)-dierentially private.

In other words, if what we care about is minimizing ℓ2 error, then projection is a cost free approach for
improving the answers. It can never make the error larger and does not increase the privacy parameters
in any way.

3 Answering Large Sets of Queries via the Projection Mechanism

While the (approximate) factorization mechanism is a useful tool for exploiting structure in queries,
some queries simply don’t have structure to exploit, and there are many families of queries where the
best factorization mechanism is to simply add Gaussian noise. In this section, we’ll see for the rst
time that it’s possible to do much better than Gaussian noise for arbitrary linear queries—at when the
dataset and data domain are not too large—via projection. More specically, we’ll see that projecting
the answers to be consistent with some dataset can not only never increase the error, it can sometimes
dramatically decrease the error!

Let x ∈ U𝑛 be some arbitrary dataset with histogram h = hx ∈ R𝑚 and let F ∈ R𝑘×𝑚 be some
arbitrary set of linear queries. To keep the notation a bit simpler we’ll assume that the queries are counts
so that ‖F‖1→2 ≤ 𝑘1/2. We’ll analyze the following simple projection mechanism:

1. First use the Gaussian mechanism to release

â = Fh + Z for Z ∼ N(0, 𝜎2I𝑘×𝑘) (44)

and 𝜎2 =
𝑐2
Y,𝛿

𝑘

𝑛2 .

2. Second, output ã = ΠC (𝑎) = argmina′∈C ‖â − a′‖2.

Since the Gaussian mechanism in the rst step already guarantees that the error is at most 𝑐Y,𝛿𝑘
1/2

𝑛
,

we know that is an upper bound on the error becasue projection cannot increase the error. However,
we’ll see that we can get a dierent, and often much better bound by analyzing the projection step itself.

To start, let a = Fh be the true answers. Let ℓ be the line through a and ã, and let p be the projection
of â onto ℓ . The key observation is that p lies on the ray from ã to innity because otherwise p would
be a point in C that is closer to â than ã, which violates the denition of the projection.

9

[I will put a picture here later. For now, see the lecture video for a visualization.]

Using this simple observation fact we can calculate

‖ã − a‖22 = 〈ã − a, ã − a〉 (45)
≤ 〈ã − a, p − a〉 (46)
= 〈ã − a, â − a〉 (47)
≤ |〈ã, â − a〉| + |〈a, â − a〉| (48)
= |〈ã,Z〉| + |〈a,Z〉| (49)
≤ 2 ·max

v∈C
|〈v,Z〉| (50)

where the last line follows from the fact that ã and a are both points in C. Now, using the above and
rescaling we have that the expected ℓ2-norm error is

E

(
‖ã − a‖2
𝑘1/2

)
≤ E

Z∼N(0,𝜎2I𝑘×𝑘)

(
(2 ·max𝑣∈C |〈v,Z〉|)1/2

𝑘1/2

)
≤ ©«

E
Z∼N(0,𝜎2I𝑘×𝑘)

(2 ·max𝑣∈C |〈v,Z〉|)

𝑘

ª®¬
1/2

(51)

So the key quantity we need to analyze is now strange quantity

E
Z∼N(0,𝜎2I)

(
max
𝑣∈C

|〈v,Z〉|
)

(52)

The key observation is that C is the convex hull of the𝑚 columns of the matrix F ∈ R𝑘×𝑚 , so these
columns c1, . . . , c𝑚 ∈ R𝑘 are the vertices of the set C. Thus, we have

E
Z∼N(0,𝜎2I)

(
max
𝑣∈C

|〈v,Z〉|
)
= E

Z∼N(0,𝜎2I)

(
max
𝑗 ∈[𝑚]

|〈c𝑗 ,Z〉|
)

(53)

Now, by assumption, for every column c𝑗 , we have ‖c𝑗 ‖2 ≤ 𝑘1/2. Thus if we x one of these columns,
we have that

〈c𝑗 ,Z〉 ∼ N (0, 𝑘𝜎2) (54)

Therefore, we are looking for the expectation of the maximum absolute value of𝑚 (not independent)
Gaussian random variables, each with variance at most 𝑘𝜎2. Using this fact, our analysis of the tails of
Gaussian random variables, and a union bound, we have that

E
Z∼N(0,𝜎2I)

(
max
𝑣∈C

|〈v,Z〉|
)
= E

Z∼N(0,𝜎2I)

(
max
𝑗 ∈[𝑚]

|〈c𝑗 ,Z〉|
)
≤ 𝑂

(
𝜎𝑘1/2 log1/2𝑚

)
(55)

Now, plugging in the fact that 𝜎2 =
𝑐2
Y,𝛿

𝑘

𝑛2 and plugging into (51) we get

E

(
‖ã − a‖2
𝑘1/2

)
≤ ©«

E
Z∼N(0,𝜎2I𝑘×𝑘)

(2 ·max𝑣∈C |〈v,Z〉|)

𝑘

ª®¬
1/2

≤ 𝑂
©«
(
𝑐Y,𝛿 log1/2𝑚

𝑛

)1/2ª®¬ (56)

To summarize, we have the following theorem:

10

Theorem 3.1 ([?]). For any set of linear queries F ∈ R𝑘×𝑚 with every entry in [−1, 1], the projection
mechanism has expected ℓ2-norm error

𝑂
©«
(
𝑐Y,𝛿 log1/2𝑚

𝑛

)1/2ª®¬ .
Interpreting the Bound. Let’s compare this bound to what we got for the standard Gaussian

mechanism without projection, which gave error ≈ 𝑐Y,𝛿𝑘
1/2

𝑛
. On the downside, the standard Gaussian

mechanism has error going to 0 at a rate of about 1/𝑛 whereas our analysis of the projection mechanism
only has error going to 0 at a rate of about 1/𝑛1/2. So the new analysis only helps when 𝑛 is relatively
small.

However, suppose 𝑛 � 𝑘1/2. Then the Gaussian mechanism will give error that is� 1, which means
the noise in the answers is dramatically larger than the range of the answers, which is between −1 and
1, so we seemingly get nothing useful out of the Gaussian mechaism. However, after we project, as long
as 𝑛 � log1/2𝑚, we actually get answers with error going to 0!

But wait, doesn’t that mean that, as long as 𝑛 � log1/2𝑚, we can answer an arbitrarily large number
of queries with error independent of the number of queries, and going to 0 as 𝑛 goes to ∞? Heck yes it
does!

Now, what to make of this condition that 𝑛 � log1/2𝑚. Well, for the rst time we have some explicit
requirement that the data comes from a bounded domain. Up until now nothing actually precluded
us from considering a dataset consisting of, say, all real numbers. However, the dependence on the
domain size isn’t too bad. For example, if the data domain isU = {0, 1}𝑑 , meaning every user answers 𝑑
yes/no questions, then𝑚 = 2𝑑 and log1/2𝑚 = 𝑑1/2, so the requirement is that 𝑛 has to be at least some
polynomial in the dimensionality of the data. That is a signicant requirement, but it’s not so bad, and
can often be a dramatically weaker requirement than 𝑛 being polynomial in the number of queries.

Additional Reading and Watching

• A very impressive line of work has shown that exact factorization mechanisms give approximately
optimal error for any set of linear queries in the parameter regime where 𝑛 is large [?, ?, ?].
The simplest proof of this fact appears in [?], which in particular shows that exact factorization
mechanisms are optimal among all mechanisms that add the same noise distribution independently
of the dataset x.

• The idea of using projection to improve the error was rst described explicitly in [?] and [?]. It
was rst shown to give dramatically improved error for any family of linear queries in the regime
where 𝑛 is somewhat small by [?].

• Explicit, near-optimal factorizations for the set of threshold queries on data in the set {1, ...,𝑇 } are
known. See, for example, Henzinger, Upadhyay and Upadhyay [?]. The matrix R ∈ R𝑇×𝑇 (called 𝐿
in their paper) has entries:

𝑅𝑖, 𝑗 =

0 if 𝑖 < 𝑗 ,

1 if 𝑖 = 𝑗 ,(
1 − 1

2𝑘
)
𝑅𝑖, 𝑗+1 if 𝑖 > 𝑗 .

A useful exercise is to drive the (unique) matrix M such that R ·M equals the matrix of threshold
queries. Show that ‖R‖F = Θ(log𝑇) (Hint: rst show that 𝑅𝑖, 𝑗 = Θ(1

𝑖−𝑗) for 𝑖 > 𝑗 .)

11

References

[BCD+07] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Proceedings of the 26th Annual ACM Symposium on Principles of Database Systems,
PODS ’07, 2007. ACM.

[BDKT12] Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, and Kunal Talwar. Uncondi-
tional dierentially private mechanisms for linear queries. In Proceedings of the 44th Annual
ACM Symposium on Theory of Computing, STOC ’12, 2012.

[ENU20] Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. The power of factorization
meisms in local and central dierential privacy. In ACM Symposium on the Theory of
Computing, STOC ’20, 2020. https://arxiv.org/abs/1911.08339.

[HRMS10] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
dierentially private histograms through consistency. Proceedings of the VLDB Endowment,
3(1), 2010. https://arxiv.org/abs/0904.0942.

[HT10] Moritz Hardt and Kunal Talwar. On the geometry of dierential privacy. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC, 2010.

[HUU22] Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. Almost tight error bounds on
dierentially private continual counting, 2022.

[LHR+10] Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor. Optimizing
linear counting queries under dierential privacy. In Proceedings of the twenty-ninth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2010.

[NTZ13] Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of dierential privacy: The
small database and approximate cases. In ACM Symposium on Theory of Computing, STOC
’13, 2013.

[TUV12] Justin Thaler, Jonathan Ullman, and Salil P. Vadhan. Faster algorithms for privately releasing
marginals. In 39th International Colloquium on Automata, Languages, and Programming -,
ICALP ’12, 2012. Springer.

12

https://arxiv.org/abs/1911.08339
https://arxiv.org/abs/0904.0942

