
Privacy in Statistics and Machine Learning Spring 2023
Lecture 10: Advanced Composition

Adam Smith (based on materials developed with Jonathan Ullman)

1 Advanced Composition of Approximate DP

In this lecture, we show that (Y, 𝛿)-dierential privacy satises a “strong composition” theorem, in which
the Y parameter increases only with the square root of the number of stages of the composition.

Consider an algorithm 𝐴 that consists of the adaptive composition of 𝑘 algorithms, each of which is
(Y, 𝛿)-DP:

𝐴!

𝒙

𝐴#

𝒚𝟏 𝒚𝟐

𝐴

𝐴& 𝐴'

𝒚𝟑 𝒚𝒌

…

In Lecture 5, we argued that if each individual algorithm is (Y, 0)-DP, then the composition of all 𝑘 is
(at worst) (𝑘Y, 0)-DP. That is the best one can hope to prove for (Y, 0)-DP, but the relaxation to (Y, 𝛿)
gives us a dierent type of guarantee:

Theorem 1.1 (Strong Composition). For all Y, 𝛿 ≥ 0 and 𝛿 ′ > 0, the adaptive composition of 𝑘 algorithms,
each of which is (Y, 𝛿)-dierentially private, is (Ỹ, 𝛿)-dierentially private where

Ỹ = Y
√︁
2𝑘 ln(1/𝛿 ′) + 𝑘Y 𝑒Y−1

𝑒Y+1 and 𝛿 = 𝑘𝛿 + 𝛿 ′. (1)

Let’s get a feeling for the asymptotics here. When Y is not too big (say, at most 1), the quantity 𝑒Y−1
𝑒Y+1 is

close to Y/2, so the nal privacy parameter Ỹ is Θ(Y
√︁
𝑘 ln(1/𝛿) + Y2𝑘) if we take 𝛿 ′ = 𝛿 . Suppose we want

this nal privacy guarantee to be at most 1, then we need Y2𝑘 < 1. In that range, we have Y
√
𝑘 > Y2𝑘 , so

Ỹ = Θ
(
Y
√︁
𝑘 ln(1/𝛿)

)
when Y < 1/

√
𝑘.

Contrast this with so-called basic composition (from Lecture 9), which shows that the adaptive composi-
tion of 𝑘 mechanisms that are (Y, 𝛿)-DP is (𝑘Y, 𝑘𝛿)-DP. When 𝑘 > ln(1/𝛿), strong compositon provides a
much tighter bound (see Figure 1 for an example). This is crucial when we analyze iterative algorithms
that have many stages, as with Lloyd’s algorithm from Lecture 5 and the dierentially private gradient
descent methods we will see in Lecture 11.

For example, consider the task of approximating a set of𝑑 count queries. Absent a special relationship
between the queries, the global ℓ1 sensitivity of the vector of counts is 𝑑 and so the Laplace mechanism
adds noise Θ(𝑑/Y) to each query’s answer. The Gaussian mechanism from last lecture would add noise
of expected magnitude only Θ(

√︁
𝑑 ln(1/𝛿)/Y) because the ℓ2 sensitivity of the vector is

√
𝑑 .

However, we can alternately view the Laplace mechanism on the whole vector as the composition of
𝑑 separate instances of the Laplace mechanism—one for each query. If we ensure each one is (Y ′, 0)-DP,

1

0 40 80 120 160 200 240 280 320 360 400 440 480 520

0.05

0.1

0.15

Figure 1: Bounds on the privacy parameter obtained for the composition of 𝑘 mechanisms, each of which is
(Y, 0)-DP for Y = 0.01. The horizontal axis represents the number 𝑘 of mechanisms. The blue (straight) curve
shows the bound 𝑘Y given by basic composition, while the red curve shows the value Ỹ given by Theorem 1.1 with
𝛿 ′ = 10−6.

then strong composition implies that the whole algorithm is (Y, 𝛿)-DP for Y = Θ(Y ′
√︁
𝑘 ln(1/𝛿). Setting

Y ′ = Y√
𝑘 ln(1/𝛿)

, we see that the Laplace mechanism satises (Y, 𝛿)dierential privacy with a smaller

amount of noise—the same Θ(
√︁
𝑑 ln(1/𝛿)/Y) bound we get from the Gaussian mechanism!

Quantitatively Tighter Bounds The bound in Theorem 1.1 provides clear asymptotics, but is not
always tight. First, we’ll see from the proof that the dominant term in the bound on Ỹ is actually a generic
bound on the tails of the binomial distribution; plugging in exact bounds can improve the constant
terms.

There are also nowmany results that yield tighter bounds for the composition of specic mechanisms
or classes of mechanisms. These have proven crucial for understanding algorithms with many stages of
a particular form, such as stochastic gradient descent (discussed next lecture). For now, though, we will
try to see how to prove the simple, general bound of Theorem 1.1.

2 Privacy Loss as a Random Variable

Given a randomized algorithm 𝐴 and two possible inputs x and x′, dene the privacy loss on output 𝑦
to be the “log-odds ratio”, that is, the log of the ratio of the likelihoods of 𝑦 under x and x′:

𝐼x,x′ (𝑦)
def
= ln

(
P (𝐴(x) = 𝑦)
P (𝐴(x′) = 𝑦)

)
. (2)

Last lecture, we showed (Lemma 1.4) that if, for every pair of neighboring data sets x, x′,

P
𝑌←𝐴(x)

(
𝐼x,x′ (𝑌) > Y

)
≤ 𝛿 ,

then the mechanism 𝐴 is (Y, 𝛿)-DP.
Now when 𝐴 consists of the adaptive composition of 𝑘 mechanisms, we can write the output as a

sequence 𝑦 = (𝑦1, 𝑦2, ..., 𝑦𝑘). We do not want to assume anything about the way that the 𝑗-th algorithm
𝐴 𝑗 is chosen based on 𝑦1, 𝑦2, ..., 𝑦 𝑗−1. Somewhat surprisingly, we don’t have to! We can break up the
probability of seeing the sequence 𝑦 as a product

P (𝐴(x) = 𝑦1, ..., 𝑦𝑘) = P (𝐴1(x) = 𝑦1) × P (𝐴2(x, 𝑦1) = 𝑦2) × · · · × P (𝐴𝑘 (x, 𝑦1, ..., 𝑦𝑘−1) = 𝑦𝑘) ,

2

.... which allows us to write the privacy loss as a sum:

𝐼x,x′ (𝑦1, .., 𝑦𝑘) =
𝑘∑︁
𝑗=1

ln
(
P
(
𝐴 𝑗 (x, 𝑦1, ..., 𝑦 𝑗−1) = 𝑦 𝑗

)
P
(
𝐴 𝑗 (x′, 𝑦1, ..., 𝑦 𝑗−1) = 𝑦 𝑗

)) . (3)

The important observation is that in each term of this sum, we are conditioning on the same previous
outputs𝑦1, ..., 𝑦 𝑗−1 in the numerator and denominator. Regardless of how𝐴 𝑗 is chosen, we are comparing
outputs of the same algorithm 𝐴 𝑗 on both outputs.

Basic composition for (Y, 0)-DP follows from the fact that for such mechanisms each term in the
sum (3) is at most Y, so the sum is at most 𝑘Y.

To prove the strong composition theorem for (Y, 𝛿)-DP, we want to take advantage of the fact that
there is some cancelation in this sum. We know (roughly) that each term is contained in the interval
[−Y, Y] with high probability. But it turns out that their average is generally at most Y2. When many of
them are added, that is the behavior which dominates.

2.1 Privacy Loss Distributions for Some Representative Mechanisms

To get a sense of that, we can compute this privacy loss for a few example mechanisms, and how it is
distributed.

Gaussian Noise Suppose each 𝐴 𝑗 is an instance of the Gaussian mechanism from last lecture. The
proof of Theorem 2.1 shows that the log-odds ratio is itself normally distributed, namely when
𝑌 is the output of the algorithm under data set x, we have 𝐼x,x′ (𝑌) ∼ 𝑁

(
Δ2

2𝜎2 ,
Δ2

𝜎2

)
. We chose

𝜎 = Δ
√︁
2 ln(1/𝛿)/Y, so the privacy loss for this mechanism has expectation Y2 · 1

4 ln(1/𝛿) .

Randomized Response Let’s look at the example of randomized response from Lectures 1 and 4. Each
input bit 𝑥𝑖 is randomized with a value

𝑌𝑖 =

{
𝑥𝑖 w.p. 𝑒Y

𝑒Y+1 ,

1 − 𝑥𝑖 w.p. 1
𝑒Y+1 .

For every two neighboring datasets x, x′, the privacy loss 𝐼x,x′ (𝑦) is therefore Y with probability
𝑒Y

𝑒Y+1 , and −Y with probability 1
𝑒Y+1 . It’s expectation is Y · 𝑒Y−1

𝑒Y+1 = Θ
(
Y2
)
. Again, we see the same

scaling.

Name and Shame Recall the name and shame algorithm 𝑁𝑆𝛿 from Lecture 5, which outputs each
person’s raw data with probability 𝛿 . If data sets x, x′ dier in person 𝑖’s data, the privacy loss is
+∞ when person 𝑖’s data is released, and 0 when it is not. The expectation of this privacy loss is
∞, but only due to the small probability event in which there is a catastrophic failure of secrecy.

We’ll see below that these three behaviors are representative—every (Y, 𝛿) dierentially private
algorithm has privacy loss that is roughly Y2 in expectation, as long as we rst set aside some event of
probability at most 𝛿 .

Exercise 2.1. What is the distribution of the privacy loss 𝐼x,x′ (𝑌) when 𝐴 is the Laplace mechanism in
one dimension? Show that its expectation is Θ(Y2).

3

3 Proving Strong Composition

3.1 The Simulation Lemma: Reducing to Leaky Randomized Response

To get a handle on the privacy loss, we’ll actually show that once we x two neighboring data sets, every
(Y, 𝛿)-DP algorithm’s behavior is captured by a very simple “leaky” variant of randomized response.

If 𝑋 and 𝑌 are random variables taking values in the same set (and with probabilities dened
for the same collection of events), we say 𝑋 ≈Y,𝛿 𝑌 if for every event 𝐸: 𝑃𝑋 (𝐸) ≤ 𝑒Y𝑃𝑌 (𝐸) + 𝛿 and
𝑃𝑌 (𝐸) ≤ 𝑒Y𝑃𝑋 (𝐸) + 𝛿 .

We would like to characterize this relation in simpler terms. As a starting point, let’s try to imagine
the simplest pair of random variables that satises the relationship. It seems like we need one type
of outcome to capture the 𝛿 additive dierence in probabilities, and another type that captures the 𝑒Y
multiplicative change. Consider the following two special random variables,𝑈 and 𝑉 , taking values in
the set {0, 1, “I am U”, “I am V”} with the probabilities

Outcome 𝑃𝑈 𝑃𝑉

0 𝑒Y (1−𝛿)
𝑒Y+1

1−𝛿
𝑒Y+1

1 1−𝛿
𝑒Y+1

𝑒Y (1−𝛿)
𝑒Y+1

“I am U" 𝛿 0
“I am V" 0 𝛿

Suppose you see a realization of either 𝑈 or 𝑉 , and you want to guess which one generated the
value you saw. If you see the outcome “I am 𝑈 ”, then you know that it must have been a realization
of 𝑈 ; hence the name of that value. Similarly, seeing “I am 𝑉 ” tells you with certainty that the value
was a realization of 𝑉 . On the other hand, if you see 0 or 1—which are much more comon when 𝛿 is
small—then you get only a weak signal about which random variable generated the value you saw.

The next lemma shows that every pair of random variables that satisfy 𝑋 ≈Y,𝛿 𝑌 are just “disguised
copies” of𝑈 and 𝑉 .

Lemma 3.1 (Simulation Lemma for (Y, 𝛿)-DP). For every pair of random variables𝑋,𝑌 such that𝑋 ≈Y,𝛿 𝑌 ,
there exists a randomized map 𝐹 such that 𝐹 (𝑈) ∼ 𝑋 and 𝐹 (𝑉) ∼ 𝑌 .

The proof of Lemma 3.1 is a bit trickly, though fairly intuitive. Murtaugh and Vadhan [MV16]
provide a self-contained proof. We give a very rough sketch here at the end of these notes.

This lemma says that, once we have xed two neighboring data sets 𝑥 and 𝑥 ′, we can view the
output of an (Y, 𝛿)-dierentially private algorithm as conveying no more information than you learn
from seeing one of𝑈 and 𝑉 .

Exercise 3.2. Let 𝑃 = 𝐿𝑎𝑝 (1/Y) and 𝑄 = 1 + Lap(1/Y) (this is abuse of notation—we mean a Laplace
random variable centered at 1 instead of at 0). Show how they can be generated from𝑈 and𝑉 by giving
an explicit randomized function 𝐹 such that 𝐹 (𝑈) ∼ 𝑃 and 𝐹 (𝑉) ∼ 𝑄 .

We can use Lemma 3.1 to prove the Strong Composition (Theorem 1.1). Fix a sequence of 𝑘
mechanisms𝐴 𝑗 , each of which takes a data set inU𝑛 as well as a partial transcript𝑦1, ..., 𝑦 𝑗−1 (abbreviated
®𝑦 𝑗−1
1) such that, for every partial transcript, 𝐴 𝑗 (·; ®𝑦 𝑗−1

1) is (Y, 𝛿)-dierentially private. Also, x two data
sets x, x′ that dier in one entry.

For every partial transcript ®𝑦 𝑗−1
1 , we have 𝐴 𝑗 (x; ®𝑦 𝑗−1

1) ≈Y,𝛿 𝐴 𝑗 (x′; ®𝑦 𝑗−1
1) and so there exists a ran-

domized map 𝐹 ®𝑦 𝑗−1
1

such that 𝐹 ®𝑦 𝑗−1
1
(𝑈) and 𝐹 ®𝑦 𝑗−1

1
(𝑉) have the same distributions as 𝐴 𝑗 (x; ®𝑦 𝑗−1

1) and
𝐴 𝑗 (x′; ®𝑦 𝑗−1

1), respectively.
This allows use to show the rst important claim:

4

Claim 3.3. There is a randomized map 𝐹 ∗ such that the composed mechanism 𝐴 satises:

𝐴(x) ∼ 𝐹 ∗(𝑈1, ...,𝑈𝑘) where𝑈1, ...,𝑈𝑘 ∼𝑖 .𝑖 .𝑑. 𝑈 and (4)
𝐴(x′) ∼ 𝐹 ∗(𝑉1, ...,𝑉𝑘) where 𝑉1, ...,𝑉𝑘 ∼𝑖 .𝑖 .𝑑. 𝑉 . (5)

Proof. Consider the algorithm:

Algorithm1: 𝐹 ∗(𝑧1, ..., 𝑧𝑘):
1 for 𝑗 = 1 to 𝑘 do
2 𝑦 𝑗 ← 𝐹 ®𝑦 𝑗−1

1
(𝑧 𝑗) ;

3 return (𝑦1, ..., 𝑦𝑘).

Since 𝐹 ®𝑦 𝑗−1
1
(𝑈 𝑗) has the same distribution as 𝐴 𝑗 (x; ®𝑦 𝑗−1

1) for each stage 𝑗 , the overall distribution of
𝐹 ∗(𝑈1, ...,𝑈𝑘) is the same as 𝐴(x) (and similarly for x′ when the inputs are i.i.d. copies of 𝑉). �

To prove that 𝐴 is Ỹ, 𝛿-dierentially private, it suces, by closure under postprocessing, to prove
that (𝑈1, ...,𝑈𝑘) ≈Ỹ,𝛿 (𝑉1, ...,𝑉𝑘). We are almost done!

3.2 Strong Composition for Leaky Randomized Response

Claim 3.4. (𝑈1, ...,𝑈𝑘) ≈Ỹ,𝛿 (𝑉1, ...,𝑉𝑘) where Ỹ, 𝛿 are as in Theorem 1.1.

Proof. We’ll consider two “bad events”: 𝐵1 and 𝐵2. The rst, 𝐵1, is when we see a clear signal that the
input was drawn according to𝑈 :

𝐵1 = {®𝑧 : at least one 𝑧 𝑗 is “I am U”}. (6)

If ®𝑧 is distributed as𝑈1, ...,𝑈𝑘 , then the probability of 𝐵1 is exactly 1 − (1 − 𝛿)𝑘 ≤ 𝑘𝛿 .
If ®𝑧 ∼ 𝑈1, ...,𝑈𝑘 , then conditioned on 𝐵1,𝑢 not occurring, we have ®𝑧 ∈ {0, 1}𝑘 . The probability of ®𝑧 is

nonzero under both𝑈 and 𝑉 , and we can compute the odds ratio by taking advantage of independence:

ln
(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

)
=
∑︁
𝑗

ln
(
𝑃𝑈 (𝑧 𝑗)
𝑃𝑉 (𝑧 𝑗)

)
=
∑︁
𝑗

ln
(
(1 − 𝛿)𝑒Y (1−𝑧 𝑗)/(𝑒Y + 1)
(1 − 𝛿)𝑒Y (𝑧 𝑗)/(𝑒Y + 1)

)
=
∑︁
𝑗

Y (−1)𝑧 𝑗 .

This log odds ratio is thus a sum of bounded, independent random variables under distribution𝑈 , with
expectation

E
®𝑧∼(𝑈1,...,𝑈𝑘)

(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

���𝐵1

)
= 𝑘Y · E

(
(−1)𝑈

���𝑈 ∈ {0, 1}) = 𝑘Y
𝑒Y − 1
𝑒Y + 1 .

By the Cherno bound, for any 𝑡 > 0 we have

Pr
®𝑧∼𝑈1,...,𝑈𝑘

©«
ln

(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

)
> Ỹ︸ ︷︷ ︸

event 𝐵2

���𝐵1

ª®®®®®¬
≤ 𝑒−𝑡

2/2 where Ỹ def
= 𝑘Y

𝑒Y − 1
𝑒Y + 1 + 𝑡Y

√
𝑘.

5

Let 𝐵2 be the event that
{
®𝑧 ∈ {0, 1}𝑘 : ln

(
𝑃𝑈 (®𝑧)
𝑃𝑉 (®𝑧)

)
> 𝑘Y 𝑒

Y−1
𝑒Y+1 + 𝑡Y

√
𝑘

}
. Note that conditioned on 𝐵1 ∩ 𝐵2,

the ratio of 𝑃𝑈 (®𝑧) to 𝑃𝑉 (®𝑧) is bounded. Hence, for any event 𝐸,

𝑃𝑈 (𝐸 ∩ 𝐵1 ∩ 𝐵2) ≤ 𝑒 Ỹ𝑃𝑉 (𝐸 ∩ 𝐵1 ∩ 𝐵2) ≤ 𝑒 Ỹ𝑃𝑉 (𝐸) .

This allows us to show the indistinguishability condition we want:

𝑃𝑈 (𝐸) ≤ 𝑃𝑈 (𝐸 ∩ 𝐵1 ∩ 𝐵2) + 𝑃𝑈 (𝐵1) + 𝑃𝑈 (𝐵2 |𝐵1)𝑃𝑈 (𝐵1)
≤ 𝑒 Ỹ𝑃𝑉 (𝐸) + 𝑘𝛿 + 𝑒−𝑡

2/2 .

Setting 𝑡 =
√︁
2 ln(1/𝛿 ′) completes the proof of Claim 3.4 and also of Theorem 1.1. �

Exercise 3.5. Use the proof strategy from the previous theorem to show that the composition of an
(Y1, 𝛿1)-DP algorithm with a (Y2, 𝛿2)-DP algorithm is (Y1 + Y2, 𝛿1 + 𝛿2)-DP.

3.3 A Proof Sketch for Lemma 3.1

Proof Sketch. We assume for simplicilty that 𝑋 and 𝑌 are discrete. The basic intuition comes from the
picture in Figure 2.

A B𝑃!

𝑃"
𝑒#𝑃! 𝑒#𝑃"

Figure 2: A picture to help understand Lemma 3.1

Let’s rst consider the case where 𝛿 = 0. Wewill describe 𝐹 by computing, for each 𝑧, the probabilities
that 𝐹 outputs 𝑧 on inputs 0 and 1. Call these probabilities 𝐹 (𝑧 |0) and 𝐹 (𝑧 |1). What linear combinations
of these two variables should equal 𝑃𝑋 (𝑧) and 𝑃𝑌 (𝑧) respectively? Once we write those down, we can
just solve for 𝐹 (𝑧 |0) and 𝐹 (𝑧 |1). We obtain:

𝑃𝑋 (𝑧) =
𝑒Y

𝑒Y + 1𝐹 (𝑧 |0) +
1

𝑒Y + 1𝐹 (𝑧 |1) (7)

𝑃𝑌 (𝑧) =
1

𝑒Y + 1𝐹 (𝑧 |0) +
𝑒Y

𝑒Y + 1𝐹 (𝑧 |1) (8)

(9)

(Question for the reader: How do we know the resulting numbers can be taken to be probabilities?)
To handle the case where 𝛿 > 0, it helps to look at Figure 2. The area under each of the red and green

curves is 1, since the probabilities in the distributions of 𝑋 and 𝑌 each add to 1. We start by proving that
the probabilities of areas 𝐴 and 𝐵 are at most 𝛿 . Now proceed under the assumption that both of them
have area exactly 𝛿 . In that case, you can write 𝑃𝑋 = 𝛿𝑃𝐴 + (1 − 𝛿)𝑃 ′𝑥 and 𝑃𝑌 = 𝛿𝑃𝐵 + (1 − 𝛿)𝑃 ′𝑦 , where
𝑃𝐴, 𝑃𝐵, 𝑃

′
𝑥 , 𝑎𝑛𝑑𝑃

′
𝑦 are probability distributions and 𝑃 ′𝑥 , 𝑃 ′𝑦 satisfy 𝑃 ′𝑥 ≈(Y,0) 𝑃 ′𝑦 . You can generate 𝑃𝐴 and

𝑃𝐵 from the inputs “I am 𝑈 ” and “I am 𝑉 ”, and use what you learned in the case 𝛿 = 0 to generate 𝑃 ′𝑥
and 𝑃 ′𝑦 under appropriate distributions on 0 and 1.

6

Finally, you can extend this solution to handle the general case with a (slightly) more complicated
calculation. Specically, let 𝛿𝑥 = 𝑃𝑋 (𝐴) and 𝛿𝑦 = 𝑃𝑌 (𝐵). Let 𝑃 ′𝑥 be the unnormalized distribution
𝑃 ′𝑥 = max {𝑃𝑋 , 𝑒Y𝑃𝑌 } and similarly dene 𝑃 ′𝑦 = max {𝑃𝑋 , 𝑒Y𝑃𝑌 }. These have mass 1 − 𝛿𝑥 and 1 − 𝛿𝑦
respectively. Let

𝐹 (“I am𝑈 ”) = 𝛿𝑥 max {0, 𝑃𝑋 − 𝑒Y𝑃𝑌 } +
𝛿 − 𝛿𝑥

𝛿
𝑃 ′𝑥

𝐹 (“I am𝑈 ”) = 𝛿𝑦 max {0, 𝑃𝑌 − 𝑒Y𝑃𝑋 } +
𝛿 − 𝛿𝑦

𝛿
𝑃 ′𝑦

𝐹 (0) =
𝑒Y + 1
𝑒2Y − 1

(
𝑒Y𝑃 ′𝑥 − 𝑃 ′𝑦

)
𝐹 (1) =

𝑒Y + 1
𝑒2Y − 1

(
𝑒Y𝑃 ′𝑦 − 𝑃 ′𝑥

)
.

The probabilities can be veried to satisfy the requirements on 𝐹 in the Lemma. �

Additional Reading and Watching

This presentation is from lecture notes on adaptive analysis by Aaron Roth and Adam Smith [?]. The
rst version of the strong composition theorem appeared in [DRV10]. Our presentation is based on
Kairouz et al. [KOV15, ?], as well as Dwork and Roth [DR14, Sections 3.5.1–2]. The characterization of
(Y, 𝛿) indistinguishability of Lemma 3.1 is due to [?]. Their proof is based on a much more general result
of Blackwell (1953). A self-contained proof may be found in [MV16].

There are now quite a few techniques to get tighter analyses of the for the adpative composition of
specic algorithms. Examples include concentrated DP [DR16, BS16, BDRS18], Renyi DP [Mir17], and
Gaussian DP [DRS19]. That literature continues to evolve.

References

[BDRS18] Mark Bun, Cynthia Dwork, Guy N Rothblum, and Thomas Steinke. Composable and versatile
privacy via truncated CDP. In Annual ACM Symposium on Theory of Computing, STOC ’18,
2018.

[BS16] Mark Bun and Thomas Steinke. Concentrated dierential privacy: Simplications, extensions,
and lower bounds. In Theory of Cryptography Conference, TCC ’16, 2016. https://arxiv.
org/abs/1605.02065.

[DR14] Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Dierential Privacy. NOW
Publishers, 2014.

[DR16] Cynthia Dwork and Guy N Rothblum. Concentrated dierential privacy. arXiv preprint
arXiv:1603.01887, 2016. https://arxiv.org/abs/1603.01887.

[DRS19] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian dierential privacy. arXiv preprint
arXiv:1905.02383, 2019. https://arxiv.org/abs/1905.02383.

[DRV10] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and dierential privacy. In
FOCS. IEEE, 2010.

7

https://arxiv.org/abs/1605.02065
https://arxiv.org/abs/1605.02065
https://arxiv.org/abs/1603.01887
https://arxiv.org/abs/1905.02383

[KOV15] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for dierential
privacy. In International Conference on Machine Learning, ICML ’15, 2015. https://arxiv.
org/abs/1311.0776.

[Mir17] Ilya Mironov. Rényi dierential privacy. In IEEE Computer Security Foundations Symposium,
CSF ’17, 2017. https://arxiv.org/abs/1702.07476.

[MV16] Jack Murtagh and Salil Vadhan. The complexity of computing the optimal composition of
dierential privacy. In Theory of Cryptography Conference, TCC ’16, 2016. https://arxiv.
org/abs/1507.03113.

8

https://arxiv.org/abs/1311.0776
https://arxiv.org/abs/1311.0776
https://arxiv.org/abs/1702.07476
https://arxiv.org/abs/1507.03113
https://arxiv.org/abs/1507.03113

