Privacy in Statistics and Machine Learning
 In-class Exercises for Lecture 17 (Multiplicative Weights)

Spring 2023
March 28, 2023

Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (Online Learning Requires Randomization) Show that for every method \mathcal{D} that plays deterministic actions (where \mathbf{p}^{t} puts probability 1 on a single action) there is an adversary for which \mathcal{D} 's average regret is $\Omega(1)$.
2. $(\sqrt{\ln (k) / T}$ lower bound) Show that for any method (randomized or not), if the adversary picks cost vectors unfiormly at random in $\{0,1\}^{k}$, the expected regret will be $\Theta(\sqrt{\log (k) / T})$. (Hint: The expected cost paid by the algorithm is exactly $T / 2$. Show that in hindsight, with probability at least $1 / 2$, one of the choices will have cost less than $\frac{T}{2}-\Omega(\sqrt{T \ln (k)})$. Start by showing $\frac{T}{2}-\Omega(\sqrt{T})$.) This means that the guarantee obtained by multiplicative weights is tight, in general.
3. (MW with a perfect action) Suppose we know ahead of time that there is a perfect choice a^{*} that always has cost 0 . Show that we can set η so that the algorithm achieves total expected cost at most $2 \ln (k)$. (Be careful: our proof required η to be at most $1 / 2$.)
4. (*) Show that if we know $O P T$ ahead of time, we can set η to get an expected average cost of at most $\frac{O P T}{T}+\frac{2}{T} \sqrt{\ln (k) \cdot \max (O P T, \ln (k))}$.
5. Theorem 3.1 requires us to know the number of steps T ahead of time. Show that one can modify the algorithm to adapt automatically to the length of the process. Specifically, there is a standard trick known as "repeated doubling": we start the algorithm assuming we will run for $T_{0}=4 \ln (k)$ steps. If the number of steps exceeds T_{0}, we restart the algorithm assuming a length of $T_{1}=2 T_{0}$. If the number of steps exceeds $T_{0}+T_{1}$, we expand our time horizon to $T_{2}=2 T_{1}$, and so on. Show that this variation achieves average regret $O(\sqrt{\ln (k) / T})$ of T (without knowing T).
6. How important is the fact that probabilities of higher-cost actions be selected with exponentially small probability? Consider an algorithm that, at each time t, selects action a with probability that scales polynomially in its cost so far $c_{a}^{<t}$. Specifically, suppose $p_{a}^{t} \propto \frac{1}{1+c_{\alpha}^{<t}}$. Show a sequence of cost vectors on which the algorithm has expected average regret at least $\Omega(k / T)$ (one can prove a stronger bound; but even this bound hightlights the bad dependency on k).
