Privacy in Statistics and Machine Learning

## Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk ( ${ }^{*}$ ) are more challenging or open-ended.

1. (Exercise 2.1 in the notes) Let $F:[D]^{n} \rightarrow \mathbb{R}^{\binom{D}{2}}$ that takes a dataset $\mathbf{x}$ and outputs a vector of answers containing $f_{s, t}(\mathbf{x})$ for every $1 \leq s \leq t \leq D$. Prove that the global sensitivity of $F$ is $\Theta\left(D^{2}\right)$.
2. (Exercise 2.4 in the notes) Let $\mathcal{T}$ be the set of intervals in the binary tree mechanism with domain size $D$ that is a power of 2. Prove that for every $t$, we can express the interval $\{1, \ldots, t\}$ as the union of at set of at most $\log _{2} D$ intervals in $\mathcal{T}$. For example, $\{1, \ldots 11\}=\{1, \ldots, 8\} \cup\{9,10\} \cup\{11,11\}$.
3. In this question we'll generalize the ideas of the binary tree mechanism to answer rectangle queries. Here the data universe is the two-dimensional grid with side length $D$, and each datapoint is a pair $\left(x_{i}, y_{i}\right) \in[D]^{2}$. A rectangle query $f_{s, t}^{u, v}$ is defined by ranges $1 \leq s \leq t \leq D$ and $1 \leq u \leq v \leq D$ and

$$
\begin{equation*}
f_{s, t}^{u, v}(\mathbf{x})=\#\left\{i: s \leq x_{i} \leq t \text { and } u \leq y_{i} \leq v\right\} \tag{1}
\end{equation*}
$$

Here's an example depicting data in the domain [6] ${ }^{2}$. Black dots are the data points (the position within the grid cells is irrelevant) and the orange shaded area represents the rectangle query $f_{3,5}^{4,5}$, whose answer on this dataset is 5 .

(a) How many rectangle queries are there? What is the global sensitivity of the set of all rectangle queries on the domain $[D]^{2}$ ? If we use the Laplace mechanism to answer all such queries, how much noise do we add to each query?
(b) Suppose we only want to answer the subset of queries called corner-aligned rectangle queries. This is the subset of rectangle queries that include the lower-left corner $(1,1)$, and have the form $f_{1, t}^{1, v}$.
i. Using the Laplace mechanism, how much noise would we add to answer all corner-aligned rectangle queries?
ii. How can you express any rectangle query $f_{s, t}^{u, v}$ as a combination of a small number of corner-aligned rectangle queries?
iii. How much noise would we incur if we use the Laplace mechanism to answer all corneraligned rectangle queries and then recover the answer to the other rectangle queries?
(c) (*) Can you generalize the binary-tree mechanism to answer all rectangle queries with error $O\left(\frac{1}{\varepsilon} \log ^{a} D\right)$ for some constant exponent $a$ ?
4. Consider the setting prefix-sum queries from Lectures 2 and 3 on reconstruction. The data set consists of an ordered list $x_{1}, x_{2}, \ldots, x_{n}$ in $[0,1]$. Give a differentially private algorithm which anwers all prefix sum queries with expected additive error $O\left(\frac{\log ^{3} n}{\varepsilon}\right)$ or better. (That is, you should approximate $\sum_{j=1}^{i} x_{j}$ for every $i$ ).

