Privacy in Statistics and Machine LearningSpring 2023In-class Exercises for Lecture 8 (The Binary Tree Mechanism)February 14, 2023

Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

- 1. (Exercise 2.1 in the notes) Let $F : [D]^n \to \mathbb{R}^{\binom{D}{2}}$ that takes a dataset **x** and outputs a vector of answers containing $f_{s,t}(\mathbf{x})$ for every $1 \le s \le t \le D$. Prove that the global sensitivity of F is $\Theta(D^2)$.
- 2. (Exercise 2.4 in the notes) Let \mathcal{T} be the set of intervals in the binary tree mechanism with domain size D that is a power of 2. Prove that for every t, we can express the interval $\{1, \ldots, t\}$ as the union of at set of at most $\log_2 D$ intervals in \mathcal{T} . For example, $\{1, \ldots, 11\} = \{1, \ldots, 8\} \cup \{9, 10\} \cup \{11, 11\}$.
- 3. In this question we'll generalize the ideas of the binary tree mechanism to answer *rectangle queries*. Here the data universe is the two-dimensional grid with side length *D*, and each datapoint is a pair $(x_i, y_i) \in [D]^2$. A rectangle query $f_{s,t}^{u,v}$ is defined by ranges $1 \le s \le t \le D$ and $1 \le u \le v \le D$ and

$$f_{s,t}^{u,v}(\mathbf{x}) = \#\{i : s \le x_i \le t \text{ and } u \le y_i \le v\}$$
(1)

Here's an example depicting data in the domain $[6]^2$. Black dots are the data points (the position within the grid cells is irrelevant) and the orange shaded area represents the rectangle query $f_{3,5}^{4,5}$, whose answer on this dataset is 5.

- (a) How many rectangle queries are there? What is the global sensitivity of the set of all rectangle queries on the domain $[D]^2$? If we use the Laplace mechanism to answer all such queries, how much noise do we add to each query?
- (b) Suppose we only want to answer the subset of queries called *corner-aligned rectangle queries*. This is the subset of rectangle queries that include the lower-left corner (1, 1), and have the form $f_{1,t}^{1,v}$.

- i. Using the Laplace mechanism, how much noise would we add to answer all corner-aligned rectangle queries?
- ii. How can you express any rectangle query $f_{s,t}^{u,v}$ as a combination of a small number of corner-aligned rectangle queries?
- iii. How much noise would we incur if we use the Laplace mechanism to answer all corneraligned rectangle queries and then recover the answer to the other rectangle queries?
- (c) (*) Can you generalize the binary-tree mechanism to answer all rectangle queries with error $O(\frac{1}{\varepsilon}\log^a D)$ for some constant exponent *a*?
- Consider the setting prefix-sum queries from Lectures 2 and 3 on reconstruction. The data set consists of an ordered list x₁, x₂, ..., x_n in [0, 1]. Give a differentially private algorithm which anwers all prefix sum queries with expected additive error O(^{log³ n}/_ε) or better. (That is, you should approximate Σⁱ_{i=1} x_i for every *i*).