Privacy in Statistics and Machine Learning In-class Exercises for Lecture 7 (Recap)
 February 9, 2023

Spring 2023

Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Medians. Suppose we want to find the median of a list of real numbers $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ that lie in the set $\{1, \ldots, R\}$.
Consider an instantiation of the exponential mechanism based on the following score function: For every $y \in\{1, \ldots, R\}$, let

$$
q(y ; \mathbf{x})=-\left|\sum_{i=1}^{n} \operatorname{sign}\left(y-x_{i}\right)\right|
$$

where

$$
\operatorname{sign}(z)= \begin{cases}1 & \text { if } z>0 \\ 0 & \text { if } z=0, \\ -1 & \text { if } z<0\end{cases}
$$

If all the input values are distinct, this score is 0 exactly when y is a valid median for \mathbf{x}. In general, the score will be minimized at the true median.
(a) Show that q has sensitivity at most 1 when neighboring data sets are allowed to differ by the insertion or deletion of one entry.
(b) Let A_{ε} be the algorithm one gets by instantiating the exponential mechanism with score q, parameter ε and output set $\mathcal{Y}=\{1, \ldots, R\}$. Show that there is a constant $c>0$ such that: for every data set \mathbf{x}, for every R and $\varepsilon<1$, and for every $\beta \in(0,1)$, the probability that $A_{\varepsilon}(\mathbf{x})$ samples a value y with $\left|\operatorname{rank}_{\mathbf{x}}(y)-n / 2\right|>c \cdot \frac{\ln (R)+\ln (1 / \beta)}{\varepsilon}$ is at most β. Here $\operatorname{rank}_{\mathbf{x}}(y) \in\{0,1, \ldots, n\}$ is the position y would have in the sorted order of \mathbf{x}.
For this part, it is ok to assume distinct data values, so that the rank of a value is uniquely defined.
[Hint: How does $\operatorname{ran} k_{\mathbf{x}}(\cdot)$ relate to $q(\cdot ; \mathbf{x})$? Look at the ratio between the probability mass of a true median and the probability mass of an element with very low or high rank.]

