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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Suppose we run the exponential mechanism to choose between just two output (say, election
candidates Alice and Bob). Suppose Alice gets 𝑎 votes and Bob gets 𝑏 votes (where 𝑎 + 𝑏 = 𝑛 is the
total number of votes).

What are:

(a) The output set Y?
(b) The score function 𝑞?
(c) The sensitivity bound Δ for 𝑞?

(d) The “odds ratio” Pr(𝑌=‘Alice’)
Pr(𝑌=‘Bob’) , assuming 𝑌 is the outcome of the exponential mechanism with

for this problem with input 𝜀 = 0.1? (Express your answer as a function of 𝑎 − 𝑏.
(e) How big of a margin 𝑎 − 𝑏 must Alice for her name to be output with probability at least 95%?

2. Suppose we run the exponential mechanism (or report-noisy-max/RNM) with outcome set Y and
score function 𝑞 : Y ×U𝑛 → R with sensitivity Δ. The theorems in the notes show that we expect
the error 𝑞max − 𝑞(𝐴(x)) to be 𝑂 (Δ ln(𝑑)/𝜀), but it might be much better.

Speci�cally, �x a data set x. Suppose the “true winner” for x, the outcome 𝑦∗ with score 𝑞max, is
substantially better than all other outcomes, namely, for every 𝑦 ≠ 𝑦∗,

𝑞(𝑦) < 𝑞max −
2Δ(ln(𝑑) + 𝑡)

𝜀

Show that the algorithm will output 𝑦∗ with probability at least 1 − 𝑒−𝑡 .

3. Suppose that, after running the exponential mechanism with privacy parameter 𝜀, we use the Laplace
mechanism to estimate the error 𝑞max − 𝑞(𝐴(x)) with noise Lap(2Δ/𝜀). What is the total privacy
cost of the combined algorithm if we analyze it using Basic Composition from Lecture 5?

4. The exponential mechanism is often used in private machine learning. Suppose our data set consists
of pairs (𝑥𝑖 , 𝑧𝑖) where 𝑥𝑖 is an image (e.g., represented as a grid of pixels), and 𝑧𝑖 is a label (perhaps
indicating whether the picture is of Beyoncé (labeled “1”) or Harry Styles (labeled “-1”, even though
we’re not judgy that way).

We are given a collection of 𝑘 possible classi�ers 𝑓1, ..., 𝑓𝑘 (perhaps representing di�erent settings of
weights in a neural network) among which we want to choose and output one with low training
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error. We de�ne the training error of a classi�er 𝑓 as the fraction of misclassi�ed points in the input
data set:

error(𝑓 ) def
=

1
𝑛

𝑛∑︁
𝑖=1

1{𝑧𝑖 = 𝑓 (𝑥𝑖)} .

How can you cast this as a selection problem? If you use the exponential mechanism or report noisy
max, what bounds do the lecture notes imply for the (expected, asymptotic) di�erence between the
error of the classi�er that is output and the error of the best classi�er? Express your answer as a
function of 𝑘 , 𝑛 and 𝜀.

5. Suppose you have a graph with a �xed vertex set 𝑉 , and where each individual data point 𝑥𝑖 is an
undirected edge {𝑢, 𝑣} ∈ 𝑉 × 𝑉 . For example, the nodes might represent locations, and an edge
{(𝑢, 𝑣} might represent the locations between wich an individual travels most often.

Consider the problem of �nding a near-minimum cut in the graph. This is a partition of 𝑉 into two
disjoint sets 𝐴, 𝐵 of nodes. The weight of the cut is the number of edges that cross from 𝐴 to 𝐵 (so
𝑢 ∈ 𝐴 and 𝑣 ∈ 𝐵 or vice versa). The weight of a cut can be as large as the size of the data set 𝑛, and 𝑛
can be as large as Ω( |𝑉 |2).

(a) Use the exponential algorithm (or report noisy max) to design an algorithm that returns a cut
with expected weightmin-weight+𝑂 ( |𝑉 |/𝜀) It’s OK if your algorithm runs in time polynomial
in 2 |𝑉 | .

(b) (**) There can be multiple distinct minimum cuts in a graph. However, one neat (and highly
non-trivial to prove) fact is that if𝑤∗ is the number of edges in the minimum cut, the number
of distinct cuts with weight ≤ 𝑐𝑤∗ is at most 𝑂 ( |𝑉 |2𝑐). Using this fact, prove that the error
of the exponential mechanism (or RNM) is actually much better, and it outputs a cut with
expected weight min-weight +𝑂 (log( |𝑉 |)/𝜀)

6. (*) Prove that Report Noisy Max with exponential noise (Alg. 2 in the notes) is di�erentially private.

7. Show that the accuracy guarantees we showed for the exponential mechanism (and RNM) are
basically tight in general. Speci�cally,

(a) give an input to the approval voting problem with 𝑑 candidates, on which 𝑞max = 𝑛 =
ln(𝑑)
2𝜀

but the algorithm 𝐴𝐸𝑀 will return a candidate who received 0 votes with constant probability
(independent of 𝑑).

(b) (**) Consider the family of data sets
{
x(1) , ..., x(𝑑)

}
de�ned as follows: in x( 𝑗) , one candidate

𝑗 receives 𝑞max = 𝑛 =
ln(𝑑)
2𝜀 votes and all others receive 0 votes. Show that for every 𝜀-

di�erentially private 𝐴 algorithm, if we choose 𝐽 uniformly at random in [𝑑], then with
constant probabililty 𝐴(x( 𝐽 ) ) will return a candidate other than 𝐽 . [That is, 𝐴 will fail to �nd
the winner for many datasets of this form.]
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