Privacy in Statistics and Machine Learning Spring 2023 In-class Exercises for Lecture 5 (Differential Privacy Foundations II) February 2, 2023

Adam Smith (based on materials developed with Jonathan Ullman)

Problems with marked with an asterisk (*) are more challenging or open-ended.

- 1. Consider the following two scenarios. For each one, decide whether the overall algorithm can be proven differentially private and justify your decision.
 - (a) A biologist uses an ε -DP algorithm A_1 to release the approximate frequencies of d different diseases in the data set. She then selects the 10 diseases with *the highest reported frequencies in the output of* A_1 , and uses a ε -DP algorithm to release an approximate version of all $\binom{10}{2}$ pairwise correlations between the selected diseases.
 - (b) A biologist uses an ε -DP algorithm to release the approximate frequencies of *d* different diseases in the data set. She then selects the 10 diseases with *the highest true frequencies in the original data set*, and uses a ε -DP algorithm to release all $\binom{10}{2}$ pairwise correlations between the selected diseases.
- 2. (Group Privacy) You are reviewing a paper that claims a new, differentially-private version of Lloyd's algorithm. They claim to have experiments that show good performance on data sets of size 100 with epsilon = 0.005. Should you believe them? Why or why not?
- 3. (Exercise 1.5 from the notes) Sometimes it is much better to analyze an algorithm as a whole than to use the composition lemma. Consider the histogram example from Lecture 4, where \mathcal{U} is written as a partition of disjoint sets $B_1, B_2, ..., B_d$, and we want to count how many records lie in each set. Viewed as one *d*-dimensional function, the histogram has global sensitivity 2. We could also view it as *d* separate functions $n_1, n_2, ..., n_d$, each with globabl sensitivity 1. How much noise would the Laplace mechanism add to these counts if we ran it spearately for each of the n_j with privacy budget divided equally among them? How does that compare to running the Laplace mechanism once on the joint function?
- 4. Analyze the name and shame algorithm (Exercise 3.3).
- What happens if we try to run the Laplace mechanism with different noise distributions? Which of these distributions leads to an ε-DP mechanism? For simplicity, we'll focus on the 1-dimensional case were f : Uⁿ → ℝ, and look at mechanisms of the form

$$A(\mathbf{x}) = f(\mathbf{x}) + \frac{GS_f}{\varepsilon}Z \qquad \text{where } Z \sim P \text{ and } P = \dots$$
(1)

- (a) The uniform distribution on [-1, 1] (density h(y) = 1/2 on [-1, 1] and 0 elsewhere)
- (b) The Normal distribution N(0, 1) (density $h(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2}$ for $y \in \mathbb{R}$)

(c) The Cauchy distribution (density $h(y) = \frac{1}{\pi(1+y^2)}$ for $y \in R$)

For which of the options above do we get an ε' -DP mechanism where ε' is finite (not that ε' need not be exactly equal to ε)?

Example: If we shift a copy of the uniform distribution by 0.1, we get the picture below. Are there events whose probability changes by a large multiplicative factor?

- 6. Prove Theorem 3.1 from the lecture notes (Exercise 3.2). (Comparing posterior distributions constructed assumign Alice's data are or are not used.)
- 7. (*) Can the Laplace mechanism be substantially improved? Answering that is complicated, but let's look at a sense in which the Laplace mechanism is basically optimal for 1-dimensional releases of functions with a given global sensitivity.

Fix a function $f : \mathcal{U}^n \to \mathbb{R}$. Suppose that $1/\varepsilon$ is a positive integer, and there are two data sets $\mathbf{x}, \tilde{\mathbf{x}}$ that differ in $1/\varepsilon$ entries, and such that $|f(\mathbf{x}) - f(\tilde{\mathbf{x}})| = GS_f/\varepsilon$. Show that for every ε -DP algorithm A, for at least one the two data sets \mathbf{x} and $\tilde{\mathbf{x}}$, the expected absolute value of the algorithm's error is $\Omega(GS/\varepsilon)$. That is, show that

$$\max \left\{ \mathbb{E} \left(|A(\mathbf{x}) - f(\mathbf{x})| \right), \ \mathbb{E} \left(|A(\tilde{\mathbf{x}}) - f(\tilde{\mathbf{x}})| \right) \right\} \ge c \cdot \frac{GS_f}{\varepsilon}$$

for some absolute constant *c* (e.g. c = 1/100 will do).

Hint: You can simplify things a bit by using group privacy to show that $A(\mathbf{x}) \approx_{\varepsilon'} A(\tilde{\mathbf{x}})$ for $\varepsilon' = 1$.

Hint 2: If *A* is a nonnegative random variable and $Pr(A \ge \mu) \ge \frac{1}{100}$, then $\mathbb{E}(A) \ge \mu/100$ (by Markov's inequality).

Hint 3: Look at the events that the algorithm's output is either at least $\frac{f(\mathbf{x})+f(\tilde{\mathbf{x}})}{2}$ or at most that quantity.