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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Consider the following two scenarios. For each one, decide whether the overall algorithm can be
proven dierentially private and justify your decision.

(a) A biologist uses an 𝜀-DP algorithm 𝐴1 to release the approximate frequencies of 𝑑 dierent
diseases in the data set. She then selects the 10 diseases with the highest reported frequencies
in the output of 𝐴1, and uses a 𝜀-DP algorithm to release an approximate version of all

(10
2
)

pairwise correlations between the selected diseases.
(b) A biologist uses an 𝜀-DP algorithm to release the approximate frequencies of𝑑 dierent diseases

in the data set. She then selects the 10 diseases with the highest true frequencies in the original
data set, and uses a 𝜀-DP algorithm to release all

(10
2
)
pairwise correlations between the selected

diseases.

2. (Group Privacy) You are reviewing a paper that claims a new, dierentially-private version of Lloyd’s
algorithm. They claim to have experiments that show good performance on data sets of size 100
with epsilon = 0.005. Should you believe them? Why or why not?

3. (Exercise 1.5 from the notes) Sometimes it is much better to analyze an algorithm as a whole than to
use the composition lemma. Consider the histogram example from Lecture 4, whereU is written
as a partition of disjoint sets 𝐵1, 𝐵2, ..., 𝐵𝑑 , and we want to count how many records lie in each set.
Viewed as one 𝑑-dimensional function, the histogram has global sensitivity 2. We could also view
it as 𝑑 separate functions 𝑛1, 𝑛2, ..., 𝑛𝑑 , each with globabl sensitivity 1. How much noise would the
Laplace mechanism add to these counts if we ran it spearately for each of the 𝑛 𝑗 with privacy budget
divided equally among them? How does that compare to running the Laplace mechanism once on
the joint function?

4. Analyze the name and shame algorithm (Exercise 3.3).

5. What happens if we try to run the Laplace mechanism with dierent noise distributions? Which of
these distributions leads to an 𝜀-DP mechanism? For simplicity, we’ll focus on the 1-dimensional
case were 𝑓 : U𝑛 → R, and look at mechanisms of the form

𝐴(x) = 𝑓 (x) +
𝐺𝑆 𝑓

𝜀
𝑍 where 𝑍 ∼ 𝑃 and 𝑃 = ... (1)

(a) The uniform distribution on [−1, 1] (density ℎ(𝑦) = 1/2 on [−1, 1] and 0 elsewhere)
(b) The Normal distribution 𝑁 (0, 1) (density ℎ(𝑦) = 1√

2𝜋
𝑒−

1
2 𝑦

2 for 𝑦 ∈ R)

1



(c) The Cauchy distribution (density ℎ(𝑦) = 1
𝜋 (1+𝑦2) for 𝑦 ∈ 𝑅)

For which of the options above do we get an 𝜀 ′-DP mechanism where 𝜀 ′ is nite (not that 𝜀 ′ need
not be exactly equal to 𝜀)?

Example: If we shift a copy of the uniform distribution by 0.1, we get the picture below. Are there
events whose probability changes by a large multiplicative factor?
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6. Prove Theorem 3.1 from the lecture notes (Exercise 3.2). (Comparing posterior distributions con-
structed assumign Alice’s data are or are not used.)

7. (*) Can the Laplace mechanism be substantially improved? Answering that is complicated, but let’s
look at a sense in which the Laplace mechanism is basically optimal for 1-dimensional releases of
functions with a given global sensitivity.

Fix a function 𝑓 : U𝑛 → R. Suppose that 1/𝜀 is a positive integer, and there are two data sets x, x̃
that dier in 1/𝜀 entries, and such that |𝑓 (x) − 𝑓 (x̃) | = 𝐺𝑆 𝑓 /𝜀. Show that for every 𝜀-DP algorithm
𝐴, for at least one the two data sets x and x̃, the expected absolute value of the algorithm’s error is
Ω(𝐺𝑆/𝜀). That is, show that

max {E ( |𝐴(x) − 𝑓 (x) |) , E ( |𝐴(x̃) − 𝑓 (x̃) |)} ≥ 𝑐 ·
𝐺𝑆 𝑓

𝜀

for some absolute constant 𝑐 (e.g. 𝑐 = 1/100 will do).
Hint: You can simplify things a bit by using group privacy to show that 𝐴(x) ≈𝜀′ 𝐴(x̃) for 𝜀 ′ = 1.

Hint 2: If𝐴 is a nonnegative random variable and Pr(𝐴 ≥ 𝜇) ≥ 1
100 , then E (𝐴) ≥ 𝜇/100 (by Markov’s

inequality).

Hint 3: Look at the events that the algorithm’s output is either at least 𝑓 (x)+𝑓 (x̃)
2 or at most that

quantity.
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