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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (More on pre�x sums.) Recall the pre�x sum queries from the Lecture 2 exercises. The 𝑛 pre�x sums
are the queries of the form

∑𝑖
𝑗=1 𝑠 𝑗 (for 𝑖 from 1 to 𝑛), which correspond to query vectors

𝐹𝑖 = (1, 1, . . . , 1︸     ︷︷     ︸
𝑖 ones

, 0, 0, . . . , 0︸     ︷︷     ︸
𝑛−𝑖 zeros

)

Suppose we tried to prove the reconstruction theorem (Thm 2.5) using pre�x sums instead of random
queries. Which steps of the proof would fail and why?

Can the proof be repaired without signi�cantly changing the result (i.e. without changing more than
the speci�c constants involved)? (Consider the example in problem 4(a) from Lecture 2.)

2. (Reconstruction via linear programming.) Consider the reconstruction attack that takes as input
query vectors 𝐹1, . . . , 𝐹𝑘 ∈ {0, 1}𝑛 and noisy answers 𝑎1, . . . , 𝑎𝑘 ∈ R and return the vector 𝑠 ∈ [0, 1]𝑛
that minimizes

max
𝑖=1,...,𝑘

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | (1)

Show how to write a linear program of the form introduced in the notes whose solution is the
optimal vector 𝑠 .

3. (Preventing reconstructon with subsampling) Consider a dataset x = (𝑥1, . . . , 𝑥𝑛). Now �x𝑚 = 𝑛
5 and

we will de�ne the subsampled dataset 𝑌 = (𝑦1, . . . , 𝑦𝑚) as follows. For each 𝑗 ∈ [𝑚], independently
choose a random element 𝑗 ′ ∈ [𝑛] and set 𝑦 𝑗 = 𝑥 𝑗 ′ . Note that the sampling is independent and with
replacement. Suppose we now use 𝑌 to compute the statistics in place of x. That is, using

5 · 𝑓 (𝑌 ) = 5 ·
𝑚∑︁
𝑗=1

𝜑 (𝑦 𝑗 ) (2)

in place of the true answer

𝑓 (x) =
𝑛∑︁
𝑗=1

𝜑 (𝑥 𝑗 ) (3)

Note that we multiply by 5 to account for the fact that𝑚 = 𝑛
5 . Prove that this random subsample

will simultaneously give a good estimate of the answers to many statistics. Speci�cally, one can
prove the following result
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Claim 0.1. Prove that for any set of statistics 𝑓1, . . . , 𝑓𝑘 , with probability at least 99
100 ,

∀𝑖 ∈ [𝑘] :

�����5 · 𝑚∑︁
𝑗=1

𝜑𝑖 (𝑦 𝑗 ) −
𝑛∑︁
𝑗=1

𝜑𝑖 (𝑥 𝑗 )
����� ≤ 𝑂

(√︁
𝑛 log𝑘

)
(4)

For this problem you will likely want to use the following form of “Cherno� Bound”: if 𝑍1, . . . , 𝑍𝑚
are independent where each 𝑍 𝑗 has expectation E

(
𝑍 𝑗

)
= 𝜇 and 𝑍 𝑗 takes values in [0, 1] then for

every𝑤 > 0,

P

( ����� 𝑚∑︁
𝑗=1

𝑍 𝑗 −𝑚𝜇

����� > 𝑡
√
𝑚

)
≤ 𝑒−𝑡

2/3 (5)

4. (More accurate reconstruction with more random queries.) In this question we’ll explore how to
interpolate between the two reconstruction theorems we’ve seen. Speci�cally, we will prove a
version of Theorem 2.5 that gives a more accurate reconstruction when we have 𝑘 � 𝑛 queries.
Suppose we have the following version of Claim 2.6 from the lecture notes:

Claim 0.2. Let 𝑡 ∈ {−1, 0, +1}𝑛 be a vector with at least𝑚 non-zero entries and let 𝑢 ∈ {0, 1}𝑛 be a
uniformly random vector. Then for every parameter 2 ≤ 𝑤 � 2𝑚

P

(
|𝑢 · 𝑡 | ≥

√︁
𝑚 log𝑤
10

)
≥ 1

𝑤
(6)

Using this claim, prove the following theorem

Theorem 0.3. If we ask 𝑛2 � 𝑘 � 2𝑛 queries, and all queries have error at most 𝛼𝑛, then with
extremely high probability, the reconstruction error is at most 𝑂 ( 𝛼2𝑛2

log(𝑘/𝑛) ).

How does this theorem compare to the reconstruction attacks we’ve seen for 𝑘 ≈ 𝑛2? What about
𝑘 ≈ 2

√
𝑛? What about 𝑘 ≈ 2𝑛?
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