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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (More on prex sums.) Recall the prex sum queries from the Lecture 2 exercises. The 𝑛 prex sums
are the queries of the form

∑𝑖
𝑗=1 𝑠 𝑗 (for 𝑖 from 1 to 𝑛), which correspond to query vectors

𝐹𝑖 = (1, 1, . . . , 1︸     ︷︷     ︸
𝑖 ones

, 0, 0, . . . , 0︸     ︷︷     ︸
𝑛−𝑖 zeros

)

Suppose we tried to prove the reconstruction theorem (Thm 2.5) using prex sums instead of random
queries. Which steps of the proof would fail and why?

Can the proof be repaired without signicantly changing the result (i.e. without changing more than
the specic constants involved)? (Consider the example in problem 4(a) from Lecture 2.)

2. (Reconstruction via linear programming.) Consider the reconstruction attack that takes as input
query vectors 𝐹1, . . . , 𝐹𝑘 ∈ {0, 1}𝑛 and noisy answers 𝑎1, . . . , 𝑎𝑘 ∈ R and return the vector 𝑠 ∈ [0, 1]𝑛
that minimizes

max
𝑖=1,...,𝑘

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | (1)

Show how to write a linear program of the form introduced in the notes whose solution is the
optimal vector 𝑠 .

3. (Preventing reconstructon with subsampling) Consider a dataset x = (𝑥1, . . . , 𝑥𝑛). Now x𝑚 = 𝑛
5 and

we will dene the subsampled dataset 𝑌 = (𝑦1, . . . , 𝑦𝑚) as follows. For each 𝑗 ∈ [𝑚], independently
choose a random element 𝑗 ′ ∈ [𝑛] and set 𝑦 𝑗 = 𝑥 𝑗 ′ . Note that the sampling is independent and with
replacement. Suppose we now use 𝑌 to compute the statistics in place of x. That is, using

5 · 𝑓 (𝑌 ) = 5 ·
𝑚∑︁
𝑗=1

𝜑 (𝑦 𝑗 ) (2)

in place of the true answer

𝑓 (x) =
𝑛∑︁
𝑗=1

𝜑 (𝑥 𝑗 ) (3)

Note that we multiply by 5 to account for the fact that𝑚 = 𝑛
5 . Prove that this random subsample

will simultaneously give a good estimate of the answers to many statistics. Specically, one can
prove the following result
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Claim 0.1. Prove that for any set of statistics 𝑓1, . . . , 𝑓𝑘 , with probability at least 99
100 ,

∀𝑖 ∈ [𝑘] :

�����5 · 𝑚∑︁
𝑗=1

𝜑𝑖 (𝑦 𝑗 ) −
𝑛∑︁
𝑗=1

𝜑𝑖 (𝑥 𝑗 )
����� ≤ 𝑂

(√︁
𝑛 log𝑘

)
(4)

For this problem you will likely want to use the following form of “Cherno Bound”: if 𝑍1, . . . , 𝑍𝑚
are independent where each 𝑍 𝑗 has expectation E

(
𝑍 𝑗

)
= ` and 𝑍 𝑗 takes values in [0, 1] then for

every𝑤 > 0,

P

( ����� 𝑚∑︁
𝑗=1

𝑍 𝑗 −𝑚`

����� > 𝑡
√
𝑚

)
≤ 𝑒−𝑡

2/3 (5)

4. (More accurate reconstruction with more random queries.) In this question we’ll explore how to
interpolate between the two reconstruction theorems we’ve seen. Specically, we will prove a
version of Theorem 2.5 that gives a more accurate reconstruction when we have 𝑘 � 𝑛 queries.
Suppose we have the following version of Claim 2.6 from the lecture notes:

Claim 0.2. Let 𝑡 ∈ {−1, 0, +1}𝑛 be a vector with at least𝑚 non-zero entries and let 𝑢 ∈ {0, 1}𝑛 be a
uniformly random vector. Then for every parameter 2 ≤ 𝑤 � 2𝑚

P

(
|𝑢 · 𝑡 | ≥

√︁
𝑚 log𝑤
10

)
≥ 1

𝑤
(6)

Using this claim, prove the following theorem

Theorem 0.3. If we ask 𝑛2 � 𝑘 � 2𝑛 queries, and all queries have error at most 𝛼𝑛, then with
extremely high probability, the reconstruction error is at most 𝑂 ( 𝛼2𝑛2

log(𝑘/𝑛) ).

How does this theorem compare to the reconstruction attacks we’ve seen for 𝑘 ≈ 𝑛2? What about
𝑘 ≈ 2

√
𝑛? What about 𝑘 ≈ 2𝑛?
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