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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Consider the setting of Section 2.3 of the notes (Reconstruction from Many Queries) and the attack
of Figure 4. Suppose the data set has size 𝑛 = 2, 000 and the attacker receives as input approximate
answers to all possible linear queries on a secret vector 𝑠 , each with error (at most) ±100. What
upper bound does Theorem 2.4 give on the attack’s reconstruction error?

2. (Baselines) Suppose an attacker does not get access to the released statistics. They know only
that 𝑠 ∈ {0, 1}𝑛 is uniformly random.

(a) What is the expected error ‖𝑠 − 𝑠 ‖1 of every reconstruction attack that guesses a vector
𝑠 ∈ {0, 1}𝑛? Here ‖𝑠 − 𝑠 ‖1 is the number of bits in which 𝑠 and 𝑠 dier.1 This expected
error gives us a baseline to evaluate when an attack that does use the released statistics is
“interesting”.

(b) Suppose, as a dierent baseline, we want to understand the probability that an attacker
without access to released statistic can guess 𝑠 such that ‖𝑠 − 𝑠 ‖1 ≤ 𝑛/4. How could you
argue that this probability is small? (Relevant tools include the Chebyshev inequality and
Cherno bounds.)
In fact, the probability is exponentially small in 𝑛 (that is, at most 2−𝑐𝑛 for a constant 𝑐 > 0)?
Prove using a Cherno bound.

(In general, nding a good “baseline” for evaluating reconstruction attacks is tricky.)

3. (Optimality of the attack in Section 2.3.)

(a) Show that the guarantee of Theorem 2.4 is essentially tight. Specically: Give an algorithm
that takes as input a data set with a secret vector 𝑠 of bits and an error rate 𝛼 , and produces
answers to all possible linear queries so that with (i) each approximate answer is within 𝛼𝑛

of the correct one, and (ii) the attack of Theorem 2.4 returns a vector 𝑠 with reconstruction
error at least 𝛼𝑛.

(b) (*) Can you modify your procedure so it guarantees that no attack algorithm always returns
a vector 𝑠 with reconstruction error 𝛼𝑛? What if the algorithm just has to work with
high probability (say 0.95)? What additional assumptions does your result require? (For
example, you might have to make assumptions about the distribution of 𝑠 , and what the
attack algorithm knows about it.)

(See next page.)
1More generally, ‖ · ‖1 denotes the sum of the absolute values of the entries of a vector.
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4. Now let’s consider a slightly dierent setting, in which the attacker gets approximate answers to
a much smaller number of queries.

Instead of all 2𝑛 queries on 𝑠 ∈ {0, 1}𝑛 , the attacker receives approximate answers only to the 𝑛
prex sums of the form

∑𝑖
𝑗=1 𝑠 𝑗 (for 𝑖 from 1 to 𝑛). These correspond to query vectors

𝐹𝑖 = (1, 1, . . . , 1︸     ︷︷     ︸
𝑖 ones

, 0, 0, . . . , 0︸     ︷︷     ︸
𝑛−𝑖 zeros

)

(a) Suppose that 𝑛 is even (for simplicity) and 𝑠 consists of alternating 0’s and 1’s, that is
𝑠 = (0101 · · · 01). Show how you could give a sequence of answers 𝑎1, ..., 𝑎𝑛 such that (i)
each prex sum query is answered to within 1, that is,

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 1 for all 𝑖 = 1, ..., 𝑛 ,

and (ii) the algorithm of Figure 4 would reconstruct a vector 𝑠 that is wrong in all 𝑛 positions
(that is, 𝑠 diers from 𝑠 in every entry.

(b) Try to generalize this as follows: suppose that 𝑠 is uniformly random in {0, 1}𝑛 . Give a
procedure that takes 𝑠 as input and returns a sequence of answers 𝑎1, ..., 𝑎𝑛 such that (i) each
prex sum query is answered to within 1, that is,

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 1 for all 𝑖 = 1, ..., 𝑛 ,

and (ii) the algorithm of Figure 4 would reconstruct a vector 𝑠 whose expected distance
from 𝑠 is Ω(𝑛). (Here the expectation is taken over the choice of 𝑠; the attack of Figure 4 is
deterministic and your algorithm can also be.)

(c) (*) Can you come up with a version of this result that works against every attack algorithm
(with high probability over the choice of 𝑠 and any random choices made by your algorithm
and the attack)?
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