Privacy in Statistics and Machine Learning

Adam Smith

Problems with marked with an asterisk (${ }^{*}$) are more challenging or open-ended.

1. Suppose X_{1}, \ldots, X_{n} are independent random valriables, each with mean $\mathbb{E}\left(X_{i}\right)=\mu$ and standard deviation $\sigma=\sqrt{\operatorname{Var}\left(X_{i}\right)}$ (for all $\left.i\right)$.
What are the expectation and variance of the average $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$?
(a) $\mathbb{E}(\bar{X})=\mu n$ and $\sqrt{\operatorname{Var}(\bar{X})}=n \sigma$
(b) $\mathbb{E}(\bar{X})=\mu$ and $\sqrt{\operatorname{Var}(\bar{X})}=\sigma$
(c) $\mathbb{E}(\bar{X})=\mu$ and $\sqrt{\operatorname{Var}(\bar{X})}=\sigma / \sqrt{n}$
(d) $\mathbb{E}(\bar{X})=\mu$ and $\sqrt{\operatorname{Var}(\bar{X})}=\sigma / n$
(e) $\mathbb{E}(\bar{X})=\mu / n$ and $\sqrt{\operatorname{Var}(\bar{X})}=\sigma / n$
2. Recall the randomized response mechanism discussed in class. For each input bit x_{i}, it generates

$$
Y_{i}= \begin{cases}x_{i} & \text { w.p. } 2 / 3 \\ 1-x_{i} & \text { w.p. } 1 / 3\end{cases}
$$

Give a procedure that, given the outputs Y_{1}, \ldots, Y_{n} from randomized response on input x_{1}, \ldots, x_{n}, returns an estiamte A such that

$$
\sqrt{\mathbb{E}\left(\left(A-\sum_{i=1}^{n} x_{i}\right)^{2}\right)}=O(\sqrt{n})
$$

Hint: Find a function f that rescales the Y_{i} so that $\mathbb{E}\left(f\left(Y_{i}\right)\right)=x_{i}$.
3. (*) Consider the second randomized response mechanism described in class, in which

$$
Y_{i}= \begin{cases}\varphi\left(x_{i}\right) & \text { w.p. } \frac{e^{\varepsilon}}{e^{\varepsilon}+1} \\ 1-\varphi\left(x_{i}\right) & \text { w.p. } \frac{1}{e^{\varepsilon}+1}\end{cases}
$$

(Here $\varphi: \mathcal{X} \rightarrow\{0,1\}$ is any function that maps data records to bits.)
Give a procedure that, given the outputs Y_{1}, \ldots, Y_{n} from randomized response on input x_{1}, \ldots, x_{n}, returns an estimate A such that

$$
\sqrt{\mathbb{E}\left(\left(A-\sum_{i=1}^{n} \varphi\left(x_{i}\right)\right)^{2}\right)}=\frac{e^{\varepsilon / 2}}{e^{\varepsilon}-1} \sqrt{n}
$$

Hint: Find a function f that rescales the Y_{i} so that $\mathbb{E}\left(f\left(Y_{i}\right)\right)=\varphi\left(x_{i}\right)$.

Reminders on sums of random variables A good reference on the probability material needed for this class is the book of Mitzenmacher and Upfal [?]. We include here a few reminders that will be useful in today's lecture.

- Expectations are linear: If X, Y are random variables (it does not matter if they are independent), then for any constants $a, b \in \mathbb{R}$, we have

$$
\mathbb{E}(a X+b Y)=a \mathbb{E}(X)+b \mathbb{E}(Y) .
$$

By induction, linearity extends to finite sums (so $\mathbb{E}\left(a_{1} X_{1}+\cdots+a_{k} X_{k}\right)=a_{1} \mathbb{E}\left(X_{1}\right)+\cdots+a_{k} \mathbb{E}\left(X_{k}\right)$.

- Variances add when random variables are independent: For any independent random variables X, Y, and for any constants $a, b \in R$, we have

$$
\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
$$

Again, by induction, if X_{1}, \ldots, X_{k} are independent, then $\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} X_{i}\right)=\sum_{i}=1^{k} a_{i}^{2} \operatorname{Var}\left(X_{i}\right)$. Note that variances do not necessarily add for dependent random variables. For example, if $Y=-X$, what is the variance of $X+Y$?

- Chebyshev's inequality: For any random variable X with finite mean and variance, for every $t>0$, we have

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq t \sqrt{\operatorname{Var}(X)}) \leq 1 / t^{2} .
$$

- "Chernoff bounds" are a family of concentration inequalities for sums of independent random variables. A useful example is the following:

Lemma 0.1. Let X_{1}, \ldots, X_{n} be i.i.d. random variables taking values in $[0,1]$. Let X denote their sum and let $\mu=\mathbb{E}\left(X_{i}\right)$ (so that $\mathbb{E}(X)=\mu n$. Then,

- For every $\delta \geq 0, \mathbb{P}(X>(1+\delta) \mu n) \leq e^{-\delta^{2} \mu n / 3}$
- For every $\delta \in[0,1], \mathbb{P}(X<(1-\delta) \mu n) \leq e^{-\delta^{2} \mu n / 2}$.

In particular, for every $t>0$, the probability that $|X-\mu n| \geq t \sqrt{n}$ is at $\operatorname{most} 2 \exp \left(-t^{2} / 3\right)$.

