
Privacy in Statistics and Machine Learning Spring 2023
Homework 1: Due Sunday, February 26, 2023

Adam Smith (based on materials developed with Jonathan Ullman)

Collaboration and Honesty Policy Reminder: Collaboration in the form of discussion is allowed.
However, all forms of cheating (copying parts of a classmate’s assignment, plagiarism from papers or
old posted solutions) are NOT allowed. A rough rule of thumb: you should be able to walk away from a
discussion of a homework problem with no notes at all and write your solution on your own. Finding
answers to problems on the Web or from other outside sources (these include anyone not enrolled in
the class) is forbidden.

• You must write up each problem solution by yourself without assistance, even if you collaborate with
others to solve the problem.

• You must identify your collaborators. If you did not work with anyone, you should write “Collab-
orators: none."

• Asking and answering questions in every forum the class provides (on Piazza, in class, and in
o�ce hours) is encouraged!

• Even though look up answers is forbidden, using the web to �nd alternative explanations of
concepts you need for the homework is allowed, and encouraged. For example, you can look
up background on probability and linear algebra, documentation for particular programming
languages, etc.

Problems to be handed in

1. (Node sensitivity) Imagine we have a data set that comes from a simple social network with 𝑛

people. Each node in the graph is a person. For each person, we have the following data: a unique
identi�er 𝑖𝑑 , their income 𝑎𝑖𝑑 ∈ [0, 1] and their friend list 𝐹𝑖𝑑 , which is a list of identi�ers of other
nodes. 𝐹𝑖𝑑 can have any size—it can be empty, or consist of all othe nodes, or anything in between.
We assume that friendship is symmetric: if Alice is on Bob’s friend list, then Bob is on Alice’s.
We’ll say two graphs are neighbors if they di�er by changing the data for one node, including 𝑎𝑖𝑑
and the list of edges connected to that node. Notice that changing one person’s data can potentially
a�ect everyone’s else list of friends. Because of that, natural things we would like to compute can
have high sensitivity. For example, the number of connected components in the graph can go from
𝑛 (the current number of nodes) to 1 by changing the friend list of a single node.

(a) As a function of 𝑛, what is the global sensitivity of each of the following functions? Give the
best upper bounds and lower bounds that you can. (It should be possible to given an exact
answer, like 𝑛2 − 1), for each of these.)
How does the sensitivity compare to the range of the function (that is, the di�erence between
the largest and smallest possible values it can return)?
i. the number of edges in the graph
ii. the number of triangles in the graph
iii. the diameter of the graph (this is the largest possible length of the shortest path betweent

two nodes; we de�ne the diameter of a disconnected graph to be the largest diamter of
any of its connected components).
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iv. Distance from bipartiteness: this is the smallest number of nodes that must be changed for
the graph to be bipartite.

(b) Income correlation: How correlated are friends’ incomes? Let 𝜇 be the average income in the
graph 𝜇 = 1

𝑛

∑
𝑖𝑑 𝑎𝑖𝑑 . The income correlation is

𝑔(𝑥) = 1
2#(𝑒𝑑𝑔𝑒𝑠)

∑︁
𝑖𝑑

∑︁
𝑖𝑑′∈𝐹𝑖𝑑

(𝑎𝑖𝑑 − 𝜇) (𝑎𝑖𝑑′ − 𝜇) .

(We multiply the number of edges by 2 since each edge gets counted twice in the formula.)
This quantity ranges between 0 and 1. Design a di�erentially private algorithm for this problem.
When 𝜀 = 1, for all graphs for which #(𝑒𝑑𝑔𝑒𝑠) ≥ 𝑛2/20, with probability at least 0.9, your
algorithm should approximate the value of 𝑔 with additive error ±𝑂 (1/𝑛) on all graphs. (The
constants 1 and 20 are arbitrary. In fact, one can get vanishing relative error under much
weaker conditions.)

2. (In-class Exercise 3 from Lecture 3) More accurate reconstruction with more random queries

In this question we’ll explore how to interpolate between the two reconstruction theorems we’ve
seen. Speci�cally, we will prove a version of Theorem 2.5 that gives a more accurate reconstruction
when we have 𝑘 � 𝑛 queries. Suppose we have the following version of Claim 2.6 from the lecture
notes:

Claim 0.1. Let 𝑡 ∈ {−1, 0, +1}𝑛 be a vector with at least𝑚 non-zero entries and let 𝑢 ∈ {0, 1}𝑛 be a
uniformly random vector. Then for every parameter 2 ≤ 𝑤 � 2𝑚

P

(
|𝑢 · 𝑡 | ≥

√︁
𝑚 log𝑤
10

)
≥ 1

𝑤
(1)

Using this claim, prove the following theorem

Theorem 0.2. If we ask 𝑛2 � 𝑘 � 2𝑛 queries, and all queries have error at most 𝛼𝑛, then with
extremely high probability, the reconstruction error is at most 𝑂 ( 𝛼2𝑛2

log(𝑘/𝑛) ).

How does this theorem compare to the reconstruction attacks we’ve seen for 𝑘 ≈ 𝑛2? What about
𝑘 ≈ 2

√
𝑛? What about 𝑘 ≈ 2𝑛?

3. (In-class exercise 6 from lecture 4) Di�erential Privacy and Reconstruction Attacks

Suppose 𝐴 is an 𝜀-di�erentially private algorithm that takes input x = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ {0, 1}𝑛 (so
each person’s secret information is just one bit). Consider an algorithm 𝐵 that attempts to reconstruct
the input from 𝐴’s output: on input 𝐴(x), it outputs a guess x̃. Show that, for every algorithm 𝐵: if x
is selected uniformly at random from {0, 1}𝑛 , and the algorithm 𝐵 has access only to the output of 𝐴
(nothing else), then

E
x∈𝑟 {0,1}𝑛
x̃=𝐵 (𝐴(x))

(# errors(x̃, x)) ≥ 𝑛

𝑒𝜀 + 1

Here, # errors(𝑦, 𝑥) denotes the number of positions in which two vectors disagree (also called the
Hamming distance). 1

1In other words: when 𝜀 is small, di�erentially private algorithms do not allow for non-trivial reconstruction attacks. Even
with no output at all, an attacker can always guess about 𝑛2 of the bits of x in expectation (for example, by guessing the all-zeros
string). The result above says that a attack based on di�erentially private output cannot do much better in expectation.
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Hints: Use linearity of expectation. The number of errors can be written as a sum of random variables
𝐸𝑖 (for 𝑖 = 1 to 𝑛), where

𝐸𝑖 =

{
1 if x̃𝑖 = 𝑥𝑖 ,

0 otherwise.

What can you say about the conditional distribution of 𝑥𝑖 given a particular output 𝐴(x) = 𝑎? How
big or small can Pr(𝑥𝑖 = 1|𝐴(x) = 𝑎) be? Given that, what is the largest possible probability that
𝐸𝑖 = 1? What does that tell you about 𝐸𝑖 ’s expected value? It might be helpful to think about what
happens when 𝐴 is the randomized response mechanism, though your �nal proof should apply to
any 𝜀-DP algorithm.

4. Implementing the Median Algorithm. Implement the report-noisy-max version of the median
algorithm from Lecture 6’s In-class Exercises.

Your code should take a set 𝑥 of real values as input along with parameters 𝑅 and 𝜀. The �rst step
should be to round all entries to the nearest integer in {1, ..., 𝑅}. (Values less than 1 should be rounded
up to 1; values greater than 𝑅 get rounded down to 𝑅.) The output should be a single integer.

Test your code on data drawn from the following distributions, using 𝜀 = 0.1 and𝑛 ∈ {50, 100, 500, 2000, 10000}:

• Gaussian: N(𝑅/4, 𝑅2/10) for 𝑅 ∈
{
27, 210, 216

}
.

• Poisson: Poi(50) for 𝑅 ∈
{
27, 210, 216

}
. (NB: The distribution does not change as the range

increases.)
• Bimodal: 𝑅 = 210; each data point uniform over two values

{
𝑅
2 − 𝑘, 𝑅2 + 𝑘

}
for 𝑘 = 10, 100, 200.

For each setting of parameters (data distribution, 𝑅 and 𝑛), sample 50 data sets from the distribution,
and run the algorithm 10 times on each. Collect the following statistics:

• Average error in rank: how far from 𝑛/2 is the rank of the output (on average over all 500
runs)?

• Standard deviation of error in rank (over all 500 runs): how much does this error vary from
run to run?

• Average over data sets of the standard deviation of error in rank among runs on that data set.
(This tells you whether di�erent data sets from the same distribution have di�erent distributions
on the error.)

3


