
Privacy in Statistics and Machine Learning Spring 2021
Lecture 2 & 3: Reconstruction Attacks

Adam Smith and Jonathan Ullman

How can releasing statistical information reveal information about individuals? At rst glance,
statistics like the average age of males in the dataset might seem harmless, but, as we will see, releas-
ing many such statistics, even noisy versions of these statistics, can reveal a tremendous amount of
information about individuals.

Although we’ll start with some very simpler ways that statistical information can violate privacy,
this lecture is mostly about reconstruction attacks. At a high level, a reconstruction attack allows an
attacker to recover all or part of a dataset using statistical information about that dataset. What we’ll
see is that reconstruction is not only possible, it is in fact it’s inevitable if we don’t limit what we want
to reveal about the dataset.

1 What is Aggregate?

Before we try to convince you that releasing aggregate statistical information about a dataset inevitably
reveals a lot about individuals, let’s start with the claim that aggregate statistics might reveal something
about individuals by working through some examples.

1.1 Warmup: Dierence Attacks

Let’s start with a very simple example. You’ve just started a new job and signed up for the health
insurance provided by your employer. Your employer has access to aggregate statistics from the
insurance provider, and can, in particular ask questions like

How many employees were born on [your birthday], and live in [your zipcode] and suer
from [stigmatizing medical condition]?

Suppose the answer to this query is 1. Seeing as how the employer knows your birthday and address,
and you are likely the only person at your company with this birthday and zipcode, it is now very likely
that your employer just learned about your stigmatizing medical condition.

Maybe this example is a little too obvious. I the answer is 1, are we really aggregating anything?
What if we just suppress these small answers and return something like “less than 5” instead? It turns
out that small answers are not the real issue, because we can come up with two queries whose answers
are both large, but whose dierence reveals information about a specic person. Unsurprisingly, this
route for breaching privacy is called a dierence attack. Consider the following pair of queries

How many employees joined the company before [your start date] and suer from [stigma-
tizing medical condition]?
How many employees joined the company before [your start date + 1] and suer from
[stigmatizing medical condition]?

Suppose the answers to these queries are 417 and 418, respectively. Then, assuming you are the only
employee who joined on your start date, you’ve just lost privacy.

1

Dierence attacks might seem like a trivial example, but they are actually useful to keep in mind as
a simple test case for many dierent issues in privacy.

1.2 Reconstruction Example: The Census

While dierence attacks are simple, they do require the ability to ask semi-specic questions about the
data. We’ll now see an example of how far more benign-looking statistical information can reveal a lot
about individuals in the dataset.

To do so, we’ll look at an example of a recent reconstruction attack on the statistical disclosure
control methods used by the U.S. Census Bureau up through the 2010 Decennial Census [GAM19]. The
Census collects the age, sex, race, location, and other demographic information of those living in the
United States. This data is made available for various purposes, but federal law prohibits releasing the
individual responses—called microdata—so the Census instead releases tabulations of various statistics,
such as those in Figure 1. As we discussed, releasing small counts is problematic, so certain cells in the
table are suppressed, marked with a (D).

Figure 1: An example of census tabulations from [GAM19].

What can we learn from this table? Let’s look at a concrete example and focus on just Statistic
2B in the table, which tells us about the set of individuals in the dataset who reported their sex as
male. The rst column tells us that there are three such people in the dataset, so let’s denote their ages
as 𝐴 ≤ 𝐵 ≤ 𝐶 (note that sorting the ages is just for notational purposes). We have the background
information that 1 ≤ 𝐴, 𝐵,𝐶 ≤ 125, where the upper bound is based on the oldest veried age of any
human1. (The fact that ages can’t be 0 is mysterious to me, but that’s what they do in [GAM19] so
we’ll be consistent with that.) Since we are told that the median age of these three individuals is 30, we
know that 𝐵 = 30, and thus 1 ≤ 𝐴 ≤ 30 and 30 ≤ 𝐶 ≤ 125. Moreover, since the mean age of these three

1The French woman Jeanne Calment reportedly lived to 122 https://en.wikipedia.org/wiki/Jeanne_Calment.

2

https://en.wikipedia.org/wiki/Jeanne_Calment

individuals is 44, we know that (𝐴 + 𝐵 +𝐶)/3 = 44. This actually leaves relatively few possible choices
for 𝐴, 𝐵,𝐶 , depicted in Figure 2.

Figure 2: Values for 𝐴, 𝐵,𝐶 consistent with the constraints of Statistic 2B [GAM19].

Note that a priori there were
(125+3+1

3
)
= 341, 376 possible choices for 𝐴, 𝐵,𝐶 and now we are down

to just 30! Just knowing this information already tells us a lot—for example there is one 30 year old
male and no male over 101—but it’s not hard to see that adding more constraints will reveal even more
information about the microdata.

Exercise 1.1. Suppose we unsuppress Statistic 4B, and it shows that the dataset contains two African-
American males, whose mean age is 28. Is this enough information to uniquely determine the values 𝐴,
𝐵, and 𝐶? Either determine the unique choice of 𝐴, 𝐵,𝐶 consistent with the aggregate statistics, or give
two distinct choices for 𝐴, 𝐵,𝐶 .

1.3 The Reconstruction Paradigm

How canwe think about what just happened? We start with some dataset x that represents the underlying
microdata. Each statistic (or query) on the dataset is some function 𝑓 (x), and for each statistic we obtain
some answer 𝑓 (x) = 𝑎. For example, the rst column of Statistic 2B tells us that 𝑓 (x) = 3where 𝑓 counts
the number of individuals who entered male as their sex. Each statistic gives us a set of constraints on
the dataset, such as the fact that x must be a dataset with three males. More generally, some noise might
have been introduced into the answers, and we might only know something like 𝑓𝑖 (x) ≈ 𝑎𝑖 up to some
error bound 𝛼 on the approximation. For example, the suppressed cells give a constraint of the form
𝑓𝑖 (x) ≤ 5. Tables like the one in Figure 1 give us a large set of constraints like

𝑓1(x) ≈ 𝑎1
𝑓2(x) ≈ 𝑎2

...

𝑓𝑘 (x) ≈ 𝑎𝑘

Given all these constraints, we can dene the dataset reconstruction problem as follows:

Given a set of statistics {𝑓𝑖 (x) ≈ 𝑎𝑖} and an error bound 𝛼 , nd a dataset x̃ that is consistent
with all of the constraints.

If we are given enough constraints, then there may only be a single consistent dataset, in which case
we have reconstructed the microdata! More generally, the statistics might severely limit what datasets

3

are consistent, revealing a lot of information about the microdata. Notice that in our above example we
were not able to reconstruct all of x exactly, but we were able to determine that any consistent dataset
had three males, one of whom was age 30, and none of which were older than 101.

In general, solving dataset reconstruction is an instance of what are called constraint satisfaction
problems. Although most interesting constraint satisfaction problems are NP-hard in the worst case,
we can often use powertools like modern SAT-solvers to do dataset reconstruction in practice, so one
shouldn’t take much comfort in the fact that the problem is NP-hard. Moreover, in the next section we’ll
see examples where the reconstruction problem can be solved in polynomial time.

2 Linear Reconstruction Attacks

We’ll now explore linear reconstruction attacks. Aside from capturing a lot of natural settings, these
are an important case to study because we can analyze the attacks mathematically to understand the
conditions under which reconstruction is possible. In particular, we’ll see that these attacks are also
fairly robust to noise introduced in the answers to the statistics, which means we can analyze tradeos
between how much we want to release and how much noise we need to add.

2.1 The Model

This theory was introduced in a seminal paper by Dinur and Nissim [DN03] that led to the development
of dierential privacy, however we will see it presented in a somewhat dierent model that highlights
how these attacks arise in practice.

Let’s start by introducing a model for reconstruction attacks that will allow us to study the problem
formally. Suppose we start with a dataset containing identifying attributes like rst name, postal code,
age, and sex, as well as a sensitive attribute “Has Disease?” that we represent as a single bit (Figure 3 left).
We will design attacks in which an attacker who already knows the identifying attributes, and receives
approximate answers to certain statistics on the dataset will be able to approximately reconstruct the
column of sensitive bits.

Name Postal Code Age Sex Has Disease?
Alice 02445 36 F 1
Bob 02446 18 M 0

Charlie 02118 66 M 1
...

...
...

...
...

Zora 02120 40 F 1

Identiers Secret
𝑧1 𝑠1
𝑧2 𝑠2
𝑧3 𝑠3
...

...

𝑧𝑛 𝑠𝑛

Figure 3: A toy dataset (left) and its representation in our model (right)

To start, we will simply the dataset by writing each individual’s data as a pair (𝑧 𝑗 , 𝑠 𝑗) where 𝑧 𝑗 ∈ Z
contains user 𝑗 ’s identifying information and 𝑠 𝑗 ∈ {0, 1} is user 𝑗 ’s secret information (Figure 3 right).
For our toy dataset

Z = {names} × {postal codes} × {ages} × {sexes}

and, for example, 𝑧1 = (Alice, 02445, 36, F) and 𝑠1 = 1.
Next, we will dene a natural type of count statistics that captures many of the types of statistics one

would release about this sort of dataset. Intuitively, count statistics ask for the number of individuals in

4

the dataset that satisfy some specic property, for example: How many individuals are older than 40
and have secret bit 1? Since we’re interested in reconstructing the secret bits 𝑠 𝑗 , we will only consider
statistics that have the form

𝑓 (x) =
𝑛∑︁
𝑗=1

𝜑 (𝑧 𝑗)𝑠 𝑗 for some 𝜑 : Z → {0, 1} (1)

More generally we could consider queries of the form 𝑓 (x) =
∑𝑛

𝑗=1 𝜑 (𝑧 𝑗 , 𝑠 𝑗), but for reconstruction
attacks it helps to consider the special case in (1). Note that these statistics return an integer between 0
and 𝑛. In the example above 𝜑 (𝑧 𝑗) = 1 if and only if user 𝑗 is over 40.

The nice thing about these statistics, and the reason they are often called linear statistics, is because
the can be expressed in the language of linear algebra. For a given statistic 𝑓 and dataset x the value of
the statistic has the form

𝑓 (x) = (𝜑 (𝑧1), . . . , 𝜑 (𝑧𝑛)) · (𝑠1, . . . , 𝑠𝑛) (2)

where 𝑢 · 𝑣 is the dot product between the two vectors. More generally, given a set of queries 𝑓1, . . . , 𝑓𝑘
we can represent the answers as a matrix-vector product 𝐹 · 𝑠 dened as follows

𝑓1(𝑋)
...

𝑓𝑘 (𝑋)

 =

𝜑1(𝑧1) . . . 𝜑1(𝑧𝑛)

...
. . .

...

𝜑𝑘 (𝑧1) . . . 𝜑𝑘 (𝑧𝑛)

𝑠1
...

𝑠𝑛

 (3)

An important thing to note is that, in this notation, the answer to 𝑓𝑖 is the dot product of the 𝑖-th row of
the matrix, denoted 𝐹𝑖 , with the secret vector 𝑠 . In other words

𝑓𝑖 (x) = 𝐹𝑖 · 𝑠 = (𝐹 · 𝑠)𝑖 (4)

Internalizing this notation will help with what comes next. Linear algebra is tricky, and it might
seem daunting to go from something relatively intuitive like a count statistic to matrices and vectors.
However, this linear algebraic representation is going to be crucial both for analyzing how reconstruction
is possible and for making the algorithm computationally ecient.

Exercise 2.1. Consider the set of queries 𝑓1, 𝑓2, 𝑓3 specied by:

• 𝜑1(𝑧 𝑗) = 1 if and only if user 𝑗 is older than 40
• 𝜑2(𝑧 𝑗) = 1 if and only if user 𝑗 is older than 40 and male
• 𝜑3(𝑧 𝑗) = 1 if and only if user 𝑗 is older than 20 and male

For the dataset in Figure 3 (ignoring the . . . parts of the table), write the matrix 𝐹 , the secret vector 𝑠 , and
the product 𝐹 · 𝑠 .

The reconstruction problem we’re going to try to understand is how to take a vector of approximate
answers 𝑎 ≈ 𝐹 · 𝑠 and recover a vector 𝑠 ≈ 𝑠 . We’ll mostly focus on when such reconstruction is possible,
and only touch upon how to actually nd 𝑠 eciently.

2.2 A General Reconstruction Attack

For this lecture we’re basically only going to see one actual reconstruction attack, although we’ll prove
dierent things about it depending on which queries we’re given. All the attack does is try to nd a
vector of secrets 𝑠 ∈ {0, 1}𝑛 that is consistent with the information we’re given, in the sense that we
would have obtained similar answers if the true secrets were 𝑠 .

5

Input: a set of query vectors 𝐹1, . . . , 𝐹𝑘 ∈ {0, 1}𝑛 and a set of answers 𝑎1, . . . , 𝑎𝑘 ∈ R
Output: a vector of secrets 𝑠 ∈ {0, 1}𝑛

Return 𝑠 ∈ {0, 1}𝑛 that minimizes the quantity max𝑖∈[𝑘] |𝐹𝑖 · 𝑠 − 𝑎𝑖 |

Figure 4: The reconstruction attack.

Note that the reconstruction attack is dened in terms of the queries 𝐹1, . . . , 𝐹𝑘 in this vector
representation. We could have dened the attack in terms of the queries 𝜑1, . . . , 𝜑𝑘 and the public
information 𝑧1, . . . , 𝑧𝑛 , which is a more realistic way of thinking of what the attacker has access to, but
at this point we want to strip away some of the details of the model and focus on the underlying math.
In our model we can always go from the queries and public identiers to the vectors 𝐹1, . . . , 𝐹𝑘 , although
it can take some work to do so in any given application.

The next claim captures a simple, but important statement about what happens in this reconstruction
attack when the answers are all accurate to within some error bound.

Claim 2.2. If every query is answered to within error ≤ 𝛼𝑛, i.e.

max
𝑖∈[𝑘]

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 𝛼𝑛,

then the reconstruction attack returns 𝑠 such that max𝑖∈[𝑘] |𝐹𝑖 · 𝑠 − 𝑎𝑣 | ≤ 𝛼𝑛.

To see why this claim is true, not that the true vector of secrets 𝑠 satises max𝑖∈[𝑘] |𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 𝛼𝑛.
Thus, the vector 𝑠 that minimizes this quantity must make it no greater than 𝛼𝑛. We may actually nd a
vector 𝑠 that minimizes the quantity even further, but for our analysis we will only use the fact that
there is some 𝑠 that has error ≤ 𝛼𝑛 with respect to the queries.

The main idea for how we’re going to analyze this attack is to show that for every 𝑠 that disagrees
with the real 𝑠 in many coordinates, there is some query vector 𝐹𝐼 that prevents 𝑠 from being the
minimum in the sense that |𝐹𝑖 · 𝑠 − 𝐹𝑖 · 𝑠 | is too large, and therefore |𝐹𝑖 · 𝑠 − 𝑎𝑖 | is also large.

2.3 Reconstruction Using Many Queries

We’ll start with a simple baseline, in which we try to release all possible statistics on the dataset x. We
will show that any set of answers to this enormous set of queries allows reconstruction, even when the
error is large enough to render the answers almost useless. For simplicity, let’s assume that the public
identiers 𝑧1, . . . , 𝑧𝑛 are all unique, and it may help to x them to be 𝑧 𝑗 = 𝑗 . For every vector 𝑣 ∈ {0, 1}𝑛 ,
we can dene a query

𝜑𝑣 (𝑧) =
{
1 if 𝑧 = 𝑧 𝑗 and 𝑣 𝑗 = 1
0 otherwise

(5)

Note that there are 𝑘 = 2𝑛 such queries, so exponential in the size of the dataset. For notational simplicity,
we wil index the queries by the vector 𝑣 ,2 and denote the vector of queries (𝑓𝑣)𝑣∈{0,1}𝑛 .

Exercise 2.3. For 𝑛 = 3, and 𝑧 𝑗 = 𝑗 for 𝑗 ∈ {1, 2, 3}, write down the matrix 𝐹 ∈ {0, 1}𝑘×𝑛

2If indexing an array with a vector bothers you, think of 𝑣 as an integer written in binary.

6

We’ll show that given answers to all these queries that are accurate to within ± 𝑛
100 , we can recover

𝑠 that is correct for at least 95𝑛
100 users. Thus, even very noisy answers can lead to almost perfect

reconstruction! An important note: we’re placing no assumptions on the secret vector 𝑠 , so without the
query answers the best we could hope to do is guess at random, which would be right for only 𝑛

2 of the
users on average.

We will prove the following theorem about this reconstruction attack.

Theorem 2.4 ([DN03]). If all queries have error at most 𝛼𝑛, then the reconstruction error (the number of
entries on which 𝑠 and 𝑠 disagree) is at most 4𝛼𝑛.

Proof. Our claim is that any such guess 𝑠 in fact agrees with the true private bits 𝑠 for all but 4𝛼𝑛 of the
users. The reason is that if 𝑠 disagreed with more than 4𝛼𝑛 of the secret bits, then the answer to some
query would have eliminated 𝑠 from contention. To see this, x some 𝑠 ∈ {0, 1}𝑛 , and let

𝑆01 = { 𝑗 : 𝑠 𝑗 = 0, 𝑠 𝑗 = 1} and 𝑆10 = { 𝑗 : 𝑠 𝑗 = 1, 𝑠 𝑗 = 0} (6)

If 𝑠 and 𝑠 disagree on more than 4𝛼𝑛 bits, then at least one of these two sets has size larger than 2𝛼𝑛.
Let us assume that this set is 𝑆01, and we’ll deal with the other case by symmetry. Let 𝑣 be the indicator
vector for the set 𝑆01, which is dened by 𝑣 𝑗 = 1 ⇐⇒ 𝑗 ∈ 𝑆01. This vector denes a statistic 𝑓𝑣 that
counts how many users have 𝑗 ∈ 𝑆01 and secret bit 𝑠 𝑗 = 1. Then we have

|𝐹𝑣 · 𝑠 − 𝐹𝑣 · 𝑠 | = |𝑆01 | > 2𝛼𝑛, (7)

but, at the same time, if 𝑠 were output by the attacker, we would have

|𝐹𝑣 · 𝑠 − 𝐹𝑣 · 𝑠 | ≤ |𝑎𝑣 − 𝐹𝑣 · 𝑠 | + |𝐹𝑣 · 𝑠 − 𝑎𝑣 | ≤ 2𝛼𝑛, (8)

which is a contradiction. �

An important point about the proof is that the attacker does not need to know the set 𝑆10, or the
corresponding statistic 𝑓𝑣 . Since the attacker asks all possible queries, we can be sure 𝑓𝑣 is one of these
statistics, and an accurate answer to it rules out this particular bad choice of 𝑠 .

2.4 Reconstruction Using Fewer Queries

The reconstruction attack we just discussed is quite powerful, as it recovers 96% of the secret bits
correctly even from answers with 1% error. Even that is a non-obvious an important message. But
arguably the attack is unrealistic, since it requires answers to an enormous set of 2𝑛 counts, which is
infeasible even for relatively small datasets.

What if we simply bound the number of counts we release to something much less than� 2𝑛? Does
reconstruction from noisy answers suddenly become impossible? The answer turns out to be no! What
we will now show is that 𝑂 (𝑛) random queries are enough to reconstruct the dataset to high-accuracy,
provided that the answers have error �

√
𝑛. There are good reasons why this

√
𝑛 bound appears, and

why it’s interesting, which we’ll return to after we describe and analyze the attack.
However, Dinur and Nissim showed that if we obtain highly accurate answers—still noisy, but with

error smaller than the sampling error—then we can reconstruct the dataset to high accuracy. We can
also make the reconstruction process computationally ecient by using linear programming to replace
the exhaustive search over all 2𝑛 possible vectors of secrets.

7

Describing the attack. Specically, in the attack, the attacker will now choose 𝑘 = 20𝑛 randomly
chosen functions3 𝜑𝑖 : Z → {0, 1}. Let these queries be (𝑓𝑖)𝑖∈[𝑘] .4 The reconstruction procedure will be
the same as before. The attacker will receive a vector of answers 𝑎 = (𝑎𝑣) with the guarantee

∀𝑖 ∈ [𝑘] |𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 𝛼𝑛 (9)

Note that we want the error bound to be �
√
𝑛 so think of 𝛼 as � 1/

√
𝑛. For now, reconstruction will

proceed the same way, by nding any vector 𝑠 ∈ {0, 1}𝑛 such that

∀𝑖 ∈ [𝑘] |𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 𝛼𝑛. (10)

As before, a solution always exists because the actual private bits 𝑠 will satisfy the constraints. Note that
even though there are only 20𝑛 queries, nding 𝑠 might still require time proportional to 2𝑛 because we
have to search over 2𝑛 possible vectors 𝑠 ∈ {0, 1}𝑛 . After analyzing this attack, we wil see a method for
reconstructing in polynomial time.

We can prove the following theorem about this reconstruction attack.

Theorem 2.5 ([DN03]). If all queries have error at most 𝛼𝑛, then with extremely high probability, the
reconstruction error (the number of entries on which 𝑠 and 𝑠 disagree) is at most 256𝛼2𝑛2. Note that the
constant 256 is somewhat arbitrary and can denitely be improved with more careful analysis.

Observe that when 𝛼 � 1/
√
𝑛, the reconstruction error is � 𝑛, meaning that we recover nearly all

of the secret bits. The proof that this attack has low reconstruction error is much trickier, but ultimately
uses the same idea we used for the exponential reconstruction attack—if 𝑠 and 𝑠 disagree on many bits,
then there will be some query that proves 𝑠 cannot be close to 𝑠 .

In order to complete the proof, we’ll need the following technical fact.

Claim 2.6. Let 𝑡 ∈ {−1, 0, +1}𝑛 be a vector with at least 𝑚 non-zero entries and let 𝑢 ∈ {0, 1}𝑛 be a
uniformly random vector. Then

P
(
|𝑢 · 𝑡 | ≤

√
𝑚/4

)
≤ 9

10 (11)

Proof sketch. Intuitively, what we want to show is that 𝑢 · 𝑡 behaves somewhat like a Gaussian random
variable with standard deviation at least

√
𝑚/2. If it were truly Gaussian with this standard deviation,

then the probability that it is contained in an any interval of width
√
𝑚/2 would be at most 7

10 . The
reason the right-hand side above is 9

10 is because the Gaussian approximation isn’t exactly correct, and
we need to account for the dierence. �

Now let’s return to the proof of Theorem 2.5

Proof of Theorem 2.5. Our goal will be to show that any vector 𝑠 ∈ {0, 1}𝑛 that disagrees with 𝑠 on more
than 256𝛼2𝑛2 bits cannot satisfy

∀𝑖 ∈ [𝑘] |𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≤ 𝛼𝑛. (12)

and thus cannot be the output of the reconstruction attack. To this end, x the true secret vector
𝑠 ∈ {0, 1}𝑛 and let

B =
{
𝑠 : 𝑠 and 𝑠 disagree on at least 256𝛼2𝑛2 coordinates

}
(13)

3The choice of the constant 20 is somewhat arbitrary
4We’ll use the handy notation [𝑘] = {1, . . . , 𝑘} a lot in this course.

8

Our goal is to show that the reconstruction attack does not output any vector in B. To this end, we will
say that statistic 𝑖 eliminates vector 𝑠 if

|𝐹𝑖 · (𝑠 − 𝑠) | ≥ 4𝛼𝑛 (14)

If 𝑠 is eliminated by some statistic 𝑖 then 𝑠 cannot be the output of the reconstruction attack because

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≥ |𝐹𝑖 · (𝑠 − 𝑠) − 𝑎𝑖 | − |𝐹𝑖 · 𝑠 − 𝑎𝑖 | ≥ 4𝛼𝑛 − 𝛼𝑛 = 3𝛼𝑛. (15)

Thus, our goal is to show that every vector in B is eliminated by some query. In other words

∀𝑠 ∈ B ∃𝑖 ∈ [𝑘] |𝐹𝑖 · (𝑠 − 𝑠) | ≥ 4𝛼𝑛 (16)

To this end, let’s x some particular vector 𝑠 ∈ B and show that it is eliminated with extremely high
probability. Specically, suppose 𝑠 ∈ {0, 1}𝑛 diers from 𝑠 on at least𝑚 = 256𝛼2𝑛2 coordinates. We will
argue

∃𝑖 ∈ [𝑘] |𝐹𝑖 · (𝑠 − 𝑠) | ≥ 4𝛼𝑛 (17)
We will show how (17) can be deduced from Claim 2.6. Fix some vectors 𝑠 and 𝑠 that dier on at least𝑚
coordinates, and dene 𝑡 = 𝑠 − 𝑠 . Then 𝑡 ∈ {−1, 0, +1}𝑛 and 𝑡 has at least𝑚 non-zero entries. Moreover,
since the queries are chosen uniformly at random, 𝑢 = 𝐹𝑖 is a uniformly random vector in {0, 1}𝑛 . Thus
𝑢 and 𝑡 satisfy the assumptions of Claim 2.6, so we conclude that

P (|𝐹𝑖 · (𝑠 − 𝑠) | ≤ 4𝛼𝑛) ≤ 9
10 (18)

Thus, each query 𝑓𝑖 has a small chance of catching the dierence between 𝑠 and 𝑠 . Now, since the 𝑘 = 20𝑛
queries are independent, we have that

P (∀𝑖 ∈ [𝑘] : |𝐹𝑖 · (𝑠 − 𝑠) | ≤ 4𝛼𝑛) ≤
(
9
10

)20𝑛
≤ 2−2𝑛 (19)

The last step is to argue that every 𝑠 ∈ B will be eliminated by some statistic 𝑖 . Since there are only
2𝑛 possible choices for 𝑠 , we know that |B| ≤ 2𝑛 Therefore, we have

P (∃𝑠 ∈ B , ∀𝑖 ∈ [𝑘] : |𝐹𝑖 · (𝑠 − 𝑠) | ≤ 4𝛼𝑛) ≤ 2𝑛 · 2−2𝑛 = 2−𝑛 (20)

We now know that (except with probability ≤ 2−𝑛), every vector 𝑠 that disagrees with 𝑠 on more than𝑚
coordinates will be eliminated from contention, so the attacker must return a vector 𝑠 that disagrees
on at most𝑚 coordinates. Note that the only way reconstruction can fail is if we get unlucky with the
choice of queries, which happens with probability at most 2−𝑛 . �

Do the queries have to be random? Although we modeled the queries, and thus the matrix 𝐹 as
uniformly random, it’s important to note that we really only relied on the fact that

max
𝑖∈[𝑘]

|𝐹𝑖 · (𝑠 − 𝑠) | &
√︁
err(𝑠, 𝑠), (21)

where we dene err(𝑠, 𝑠) is the number of coordinates on which they disagree. We can reconstruct when
the error is �

√
𝑛 for any family of queries that gives rise to a matrix with this property. Not every

matrix satises this property, and later in the course we will see examples of special types of queries
that are much easier to make private than random queries. However, any family of random enough
queries will have this property. More specically, the property is satised by any matrix with no small
singular values [DY08] or high discrepancy [MN12]. There is a large body of work showing that many
specic families of queries lead to reconstruction, such as the conjunction queries we began this lecture
with [KRSU10].

9

Linear Programming. A linear program with 𝑑 variables and𝑚 constraints asks us to maximize a
linear objective function over R𝑑 subject to𝑚 linear inequality constraints. Specically, given an
objective, represented by a vector 𝑐 ∈ R𝑑 , and𝑚 constraints, each represented by a vector 𝑎𝑖 ∈ R𝑑
and a scalar 𝑏𝑖 ∈ R, a linear program can be written as

max
𝑥 ∈R𝑑

𝑐 · 𝑥

s.t. ∀𝑖 ∈ [𝑚] 𝑎𝑖 · 𝑥 ≤ 𝑏𝑖

Algorithms for solving linear programs are a very interesting and deep subject, but beyond the
scope of this course. All you need to know is that linear programs can be solved in polynomial time
and can be solved very eciently in practice.

2.4.1 Making the attack computationally ecient

The attack we analyzed above is still not computationally ecient, since the attacker might have to
enumerate all 2𝑛 vectors 𝑠 ∈ {0, 1}𝑛 to nd one that minimizes

max
𝑖∈[𝑘]

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | (22)

Note that to analyze reconstruction it was sucient to nd any vector where this maximum is at most
≤ 𝛼𝑛 but there is no reason not to nd the optimal vector 𝑠 .

However, we can modify the attack slightly to run in time polynomial in 𝑛 using linear programming
(see the cutout). To do so, we have to start by nding some real-valued vector 𝑠 ∈ [0, 1]𝑛 that solves the
following

min
𝑠∈[0,1]𝑛

max
𝑖∈[𝑘]

|𝐹𝑖 · 𝑠 − 𝑎𝑖 | (23)

Then, to obtain the reconstruction we will round each entry to 0 or 1 to obtain a vector 𝑠 ∈ {0, 1}𝑛 .

Exercise 2.7. The optimization problem in (23) does not look like LPs as they are dened in the cutout
but can indeed be written as one. Show how to write a linear program whose solution solves (23).

Using a very slightly more complex analysis, one can show that if all the answers have error at most
𝛼𝑛, then the solution to the linear program will satisfy

𝑛∑︁
𝑗=1

|𝑠 𝑗 − 𝑠 𝑗 | ≤ 𝑂 (𝛼2𝑛2) (24)

and therefore the rounded solution satises

|{ 𝑗 : 𝑠 𝑗 ≠ 𝑠 𝑗 }| ≤ 𝑂 (𝛼2𝑛2) (25)

The linear program will have 𝑛 variables and 𝑂 (𝑘) constraints, so it can be solved in polynomial
time and the rounding from 𝑠 to 𝑠 is linear in 𝑛. Thus we have succeeding in getting the reconstruction
attack to run in polynomial time.

10

2.4.2 Discussion

Why does the ecient reconstruction attack work when the error is �
√
𝑛 but not when it is �

√
𝑛?

Why is reconstruction possible with error 𝑛
100 but only if we have 2𝑛 queries? It turns out that there is

good reason why the reconstruction attacks we have seen cannot tolerate more noise. Specically, we
will see an algorithm that “defeats reconstruction” but still allows us to answer counts with reasonable
bounds on the error.

To defeat reconstruction attacks, we will consider taking a random subsample of the dataset. Recall
the dataset is x = (𝑥1, . . . , 𝑥𝑛). Now x𝑚 = 𝑛

5 and we will dene the subsampled dataset 𝑌 = (𝑦1, . . . , 𝑦𝑚)
as follows. For each 𝑗 ∈ [𝑚], independently choose a random element 𝑗 ′ ∈ [𝑛] and set 𝑦 𝑗 = 𝑥 𝑗 ′ . Note
that the sampling is independent and with replacement. Suppose we now use 𝑌 to compute the statistics
in place of x. That is, we return the answer

5 · 𝑓 (𝑌) = 5 ·
𝑚∑︁
𝑗=1

𝜑 (𝑦 𝑗) (26)

in place of the true answer

𝑓 (𝑋) =
𝑛∑︁
𝑗=1

𝜑 (𝑥 𝑗) (27)

Note that we multiply by 5 to account for the fact that𝑚 = 𝑛
5 .

The subsampled dataset 𝑌 doesn’t seem inherently “private,” since each user has their data in the
subsample with probability 1

5 so whatever I was worried about happening with my data in 𝑋 still has a
reasonable chance of happening in 𝑌 . However, any reconstruction attack like those we studied above
must have reconstruction error at least 4𝑛

10 because the answers we are revealing do not depend on the
users whose data wasn’t subsampled. Thus the best the attacker can do is learn the secret bit of the
users in the subsample exactly and then guess the secret bit of the other users at random.

However, the random subsample will simultaneously give a good estimate of the answers to many
statistics. Specically, one can prove the following result

Exercise 2.8. Prove that for any set of statistics 𝑓1, . . . , 𝑓𝑘 , with probability at least 99
100 ,

∀𝑖 ∈ [𝑘]
�����5 · 𝑚∑︁

𝑗=1
𝜑𝑖 (𝑦 𝑗) −

𝑛∑︁
𝑖=1

𝜑𝑖 (𝑥 𝑗)
����� ≤ 𝑂

(√︁
𝑛 log𝑘

)
(28)

Therefore, we see that for 𝑘 = 20𝑛 as in the case of the ecient reconstruction attack, a random
subsample will prevent reconstruction and give answers with error

√︁
𝑛 log𝑛. In contrast, reconstruction

provably succeeds any time the error is �
√
𝑛, so our reconstruction attack cannot be improved

signicantly. Also, when 𝑘 � 2𝑜 (𝑛) , a random subsample will prevent reconstruction and answer all
queries with error 𝑜 (𝑛), meaning that no reconstruction attack that makes 𝑘 = 2𝑜 (𝑛) queries can tolerate
noise 𝑛

100 !
So this is a bit unsatisfying. The reconstruction attacks we have are the best possible, and can be

defeated by a method that doesn’t give a meaningful privacy guarantee. As the course goes on we will
see how to give accurate answers to these statistics with rigorous privacy guarantees via dierential
privacy [DMNS06]. In some cases, the accuracy will match the limits imposed by reconstruction attacks
and in some cases it wont. We will also see a more subtle type of privacy attack called membership-
inference that can help explain these gaps.

11

Exercise 2.9. (More general subsampling) Consider a dataset x = (𝑥1, . . . , 𝑥𝑛). For some parameter
𝑚, we will dene the subsampled dataset 𝑌 = (𝑦1, . . . , 𝑦𝑚) as follows. For each 𝑗 ∈ [𝑚], independently
choose a random element 𝑗 ′ ∈ [𝑛] and set 𝑦 𝑗 = 𝑥 𝑗 ′ . Note that the sampling is independent and with
replacement. Suppose we now use 𝑌 to compute the statistics in place of x.

1. Given 𝑌 , how can we obtain an unbiased estimate of a count statistic 𝑓 (x) = ∑𝑛
𝑗=1 𝜑 (𝑥 𝑗)? That is,

output an estimate 𝑓 (𝑌) such that for every x, E (𝑓 (𝑌)) = 𝑓 (x).

2. What is the variance of your estimate? That is, E
(
(𝑓 (𝑌) − 𝑓 (x))2

)
?

3. Suppose we are given statistics 𝑓1, . . . , 𝑓𝑘 . Prove the tightest bound you can on the maximum error
of your estimates of 𝑓𝑖 (𝑌) over all 𝑖 = 1, . . . , 𝑘 . That is, prove a bound of the form

P
(

𝑘max
𝑖=1

|𝑓𝑖 (𝑌) − 𝑓𝑖 (x) | ≤ �
)
≥ 1 − 𝛽 (29)

by lling in � with some expression in terms of𝑚, 𝑘 , and 𝛽 and proving your bound.

3 Linear Reconstruction in Practice

Often it takes some work to see how a real system would give rise to the structure and conditions we
need to make reconstruction attacks work. Before we wrap up, let’s show how reconstruction attacks
can be applied in practice to a commercial system called Dix. Dix is a system designed by the startup
Aircloak for computing statistics on a private database.

The goal of Dix is to answer SQL queries, such as:

SELECT count(*) FROM loans
WHERE loanStatus = ‘C’
AND clientId BETWEEN 2000 and 3000

on a database while preventing the disclosures about individual records in the dataset. To map these
queries to the setting we considered, denote the records in the dataset 𝑥1, . . . , 𝑥𝑛 and let each record be
of the form 𝑥 𝑗 = (clientId, loanStatus). Then these queries t our model and return

𝑛∑︁
𝑗=1

𝜑 (𝑥 𝑗) (30)

where 𝜑 returns 1 if and only 2000 ≤ clientId ≤ 3000 and loanStatus = ‘C’. They are also in
the special form required for reconstructing the secret bits 𝑠 𝑗 that indicate whether loanStatus = ‘C’.

As we’ve seen, such a system must not provide exact answers or else the attacker could run a
dierencing attack, thus Dix uses a variety of heuristics for adding noise to the answers, but the noise
they add does not satisfy formal privacy guarantees like the methods we’ll see later in the course.

Recall that to mount a reconstruction attack, we’d like to consider random queries. We can construct
a random query by randomly choosing whether to add each clientId to the query, giving us a query
like this:

SELECT count(*) FROM loans
WHERE loanStatus = ‘C’
AND (clientId = 2007
OR clientId = 2018
...
OR clientId = 2991)

12

The makers of Dix were aware that random queries of this sort lead to reconstruction attacks, so they
wanted to ensure that such queries would be answered with noise Ω(

√
𝑛). Thus, they have a system for

adding noise that scales with the square root of the number of terms in the query. If we are trying to
reconstruct a dataset of size 𝑛, and we add each clientId at random, then these queries will have Ω(𝑛)
terms and thus noise Ω(

√
𝑛). So far, so good!

However, it turns out that truly random queries are not necessary for reconstruction. In particular,
Cohen and Nissim [CN18] showed how to construct queries that are syntactically simple but are random
enough for reconstruction attacks. Specically, these queries have the form

SELECT COUNT(clientId) FROM loans
WHERE FLOOR(100 * ((clientId * 2)^0.7))

= FLOOR(100 * ((clientId * 2)^0.7) + 0.5)
AND clientId BETWEEN 2000 and 3000
AND loanStatus = ‘C’

Why queries like these are useful work is a combination of theoretical principles beyond the scope
of this course and some experimental optimizations. The upshot is that because these queries do not
require many terms to specify, Dix answered the queries with very small noise 𝑂 (1), and thus full
victim to reconstruction.

In response Dix was modied so as not to allow mathematical operations on attributes like
clientId that are unique for each record (or most records). However, this system also fell victim to
reconstruction attacks by specifying conjunctions of many attributes that are individually not unique
but that can be combined to product unique identiers. Think of queries like

handedness = ‘right’ AND age ≤ 50 AND state = MA AND eyeColor = ‘blue’

To their credit, AirCloak runs a bounty program that encourages people to catch these attacks and
thereby harden the system.5 Nonetheless these attacks show that it’s challenging to avoid reconstruction
through ad hoc methods.

Summary

Key Points

• Merely releasing “aggregate” statistics can reveal information about individuals because of small
counts and dierence attacks.

• Releasing aggregate statistics imposes constraints on the underlying data, and releasing many
such statistics, even with noise, likely allows an attacker to reconstruct all or part of the dataset.

• Reconstruction attacks show that it is impossible to release an arbitrarily large set of statistics
with any non-trivial accuracy guarantee.

• Releasing even a linear number of suciently rich statistics with noise 𝑜 (
√
𝑛) will allow recon-

struction of the dataset.
5If you’d like a great course project, try to claim the bounty!

13

Additional Reading

• A survey on privacy attacks against aggregate statistics [DSSU17]
• More discussion of reconstruction attacks at

– https://differentialprivacy.org/reconstruction-theory/
– https://differentialprivacy.org/diffix-attack/

References

[CN18] Aloni Cohen and Kobbi Nissim. Linear program reconstruction in practice. arXiv preprint
arXiv:1810.05692, 2018.

[DMNS06] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Conference on Theory of Cryptography, TCC ’06, 2006.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Proceedings
of the 22nd ACM Symposium on Principles of Database Systems, PODS ’03. ACM, 2003.

[DSSU17] Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. Exposed! A Survey of
Attacks on Private Data. Annual Review of Statistics and Its Application, 4:61–84, 2017.

[DY08] Cynthia Dwork and Sergey Yekhanin. New ecient attacks on statistical disclosure control
mechanisms. In Annual International Cryptology Conference. Springer, 2008.

[GAM19] Simson Garnkel, John M Abowd, and Christian Martindale. Understanding database
reconstruction attacks on public data. Communications of the ACM, 62(3):46–53, 2019.

[KRSU10] Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam Smith, and Jonathan Ullman. The
price of privately releasing contingency tables and the spectra of random matrices with
correlated rows. In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC
’10. ACM, 2010.

[MN12] S Muthukrishnan and Aleksandar Nikolov. Optimal private halfspace counting via discrep-
ancy. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing.
ACM, 2012.

14

https://differentialprivacy.org/reconstruction-theory/
https://differentialprivacy.org/diffix-attack/

