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We’ve seen a number of remarkable algorithms for query release, including some that allow us to
answer a huge number of queries with error that goes to 0 as = →∞. But these algorithms often give
incomparable bounds that apply in di�erent parameter regimes. For example, if we want to answer :
linear queries on a dataset of size = with entries in a domain of size<, then we have two broad classes
of bounds corresponding to the Gaussian mechanism and MWEM,

UGM ≈
:1/2

=
and UMWEM ≈

(log<)1/4 · (log:)1/2

=1/2
(1)

Note that we’re suppressing the dependence on Y, X and some other factors, which is not the “interesting”
part of these bounds. We can make some observations about these bounds, and formulate some questions
about whether they can be improved

• When : = > (=), the Gaussian mechanism gives error UGM = > (=−1/2). However, when : = Ω(=)
then both bounds are Ω(=−1/2). Is there a mechanism that answers = queries with error > (=−1/2)?

• When we ask a huge number of queries, : = 2= , then U = Ω(1). So even though we can ask a
huge number of queries, we cannot ask an arbitrary number of queries. Is there a mechanism that
answers 2= queries with error > (1)?1

• When the data domain is extremely large, for example< = 2: then MWEM o�ers no improvement
at all over the Gaussian mechanism, and when< = 2=2 then it does not give any non-trivial bound
on the error. The same is true for all of the other “advanced” algorithms we’ve seen for query
release. Is there a mechanism that improves over the Gaussian mechanism when the data domain
is extremely large, or in�nite?

We’re going to see that the answer to all of these questions is no in the worst case! The �rst
two limitations turn out to be a consequence of the reconstruction attacks that we studied in Lectures
2 & 3. We’ll also see that the third limitation is a consequence of something we’ll introduce called
membership-inference attacks that we’ll introduce at a high level.

1 Lower Bounds from Reconstruction Attacks

We can answer the �rst two questions almost immediately just by recalling the model of reconstruction
and the results we proved, and doing a bit of translation.

Recall that in our model of reconstruction, we considered datasets of the form on the left To simplify
things we will assume that the identi�ers are �xed to be 1, 2, . . . , = so that the identi�er for the 8-th user
is just the unique id 8 . Moreover, we’ll assume that the secrets are bits in {0, 1}. Since we’re interested in

1We saw such a mechanism, the projection mechanism, whose error bound has no dependence at all on the number of
queries : . However, as we will see, that result crucially relies on the fact that we only bounded the weaker ℓ2 error.
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Identi�ers Secret
I1 B1
I2 B2
I3 B3
...

...

I= B=

=⇒

Identi�ers Secret
1 0
2 1
3 1
...

...

= 0

worst-case lower bounds, we’re allowed to make these choices. With these simpli�cations we now have
a dataset x ∈ U= whereU = [=] × {0, 1}.

We also considered a special case of count queries, but we normalized them di�erently. Speci�cally,
when we studied reconstruction, we considered queries of the form

5 (x) =
=∑
8=1

i (I8)B8 (2)

However, these are just a special case of linear queries, with a di�erent normalization. Speci�cally, if we
de�ne i ′(I8 , B8) = i (I8)B8 then we get

5 ′(x) = 1
=

=∑
8=1

i ′(I8 , B8) =
5 (x)
=

(3)

The upshot is that if we allow a user to ask arbitrary linear queries on a dataset of the form we described,
then they have the ability to ask queries of the form we need for reconstruction attacks, provided that
they rescale by a factor of =.

Thus, we can restate our results about reconstruction as follows:

Theorem 1.1 (Restated from Lectures 2 & 3 and Homework 1). If an attacker is allowed to ask : arbitrary
linear queries, and receives answers to each query with error ≤ U , then (with high probability) then the
attacker can recover the secret bits with 90% accuracy for any of the following choices of : and U :

1. If : = 20= and U = 1
�=1/2

for su�ciently large constant � .

2. If = � : � 2= and U =
log(:/=)1/2
�=1/2

for su�ciently large constant � .

3. If : = 2= and U = .025.

We also proved on an in-class exercise that any algorithm that when the secret bits B1, . . . , B= are
chosen uniformly at random, then no (Y, X)-di�erentially private algorithm, for su�ciently small constant
Y, X , allows an attacker to recover the secret bits with 90% accuracy on average. Therefore, we obtain the
following lower bounds for di�erential privacy.

Theorem 1.2. For any = and any 20= ≤ : ≤ 2= , every ( 110 ,
1
10 )-di�erentially private algorithm that

answers : arbitrary linear queries on a dataset of size = over a domain of size< ≥ 2= has error

ULB = Ω

(
log(:/=)1/2

=1/2

)
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As we can see, this answers the �rst two of our motivating questions. Before going on, we can
compare this lower bound to UMWEM, which was

UMWEM = $

(
(log<)1/4(log:)1/2

=1/2

)
Notice that when< = 2= as in our reconstruction attacks, these lower bounds match up to factors that
are at most polynomia in log=, so we have essentially nailed down the optimal error of any di�erentially
private algorithm for answering arbitrary linear queries, when the universe is small!

However, when the universe is large, or even in�nite, the gap between the lower and upper bounds is
this (log<)1/4. That might not sound like much, but when the data comes from the domainU = {0, 1}3
then this factor becomes 31/4. Since real datasets are often high dimensional, meaning 3 is large, this
additional 31/4 factor can add up very quickly. In particular, if the dimension of the dataset is larger than
=2, MWEM gives no non-trivial accuracy guarantee, even when : = =2, while the lower bound is only
about 1/=1/2, and we’d like to understand which of these bounds is really capturing the cost of privacy.
In the next secton we’ll focus on understanding the role of the dimension and why it can’t be avoided.

2 Membership-Inference Attacks

Membership-inference attacks were introduced in an in�uential empirical paper by Homer et al. [HSR+08],
which applied them to public datasets from so-called genome-wide association studies. Their was then
modeled and analyzed by Sankararaman et al. [SOJH09]. They later turned out to be an important tool for
establishing the limits of di�erential privacy [BUV14, DSS+15], and have since become a standard tool for
identifying and measuring privacy risks in large-scale machine learning (e.g. [SSSS17, YGFJ18, JUO20])

2.1 The Attacker Model

Often di�erential privacy is interpreted as saying that the attacker cannot distinguish between two
worlds—one where the mechanism is run on some dataset x and a hypothetical world where the
mechanism is run on some dataset x−8 where user 8’s data has been removed or replaced with some
dummy value. Thus, if an attacker can look at the output ~ of a mechanism " and determine whether ~
is the result of " (x) or " (x−8) then " cannot be di�erentially private.

A membership-inference attack is exactly that—an attack where an attacker is given the
output ~ of some mechanism " (x) and some datapoint I, and tries to determine if I was or
was not included in the dataset x.

Note that this is an informal de�ntiion and omits some crucial details of what makes such an attack a
true violation of privacy, or a contradiction to di�erential privacy, which we’ll return to later.

There are multiple ways to model membership-inference attacks, but we will consider the following
model, which is pretty much standard, and leads to very convincing attacks:

• There is some distribution % over the data domainU and some mechanism " : U= → Y.
• The data is drawn iid from that distribution G1, . . . , G= ∼ % .
• A target I is chosen in one of two ways:

OUT: I is drawn from % , independent of G1, . . . , G=
IN: I = G8 for a randomly chosen 8 ∈ {1, . . . , =}.

• We obtain some output ~ ∼ " (x)
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• The attacker is given (1) the distribution % , (2) the output ~ and (3) the target point I and has to
decide whether I is IN or OUT.

Exercise 2.1. Suppose that for a particular mechanism " and distribution % , there is an attacker who
correctly identi�es whether the target is IN or OUT with 90% accuracy (i.e. if the target is IN the
attacker says IN at least 90% of the time and the same if the target is OUT). Prove that " cannot be
(1, 1

10= )-di�erentially private.

2.1.1 Interpreting Membership-Inference Attacks.

One important thing to note is that regardless of whether I is IN or OUT, I is drawn from % . In other
words, the only thing that di�erentiates the IN and OUT cases is whether or not I was given to the
mechanism " . This condition is crucial for proving that membership-inference contradicts di�erential
privacy, and for interpreting membership-inference as a meaningful attack. For example, suppose the
dataset represents a large fraction of the people living in the town of Framingham, MA, USA.2 Then a
reasonable attack strategy would be to say IN if the target I is a person in Framingham and OUT if the
target does not live in Framingham. Although the attacker has a pretty good chance of succeeding, it’s
hard to argue that the mechansim is at fault, since the attacker could succeed using only the publicly
available information that the study is taking place! The way we’ve de�ned membership inference
ensures that the attacker can only succeed if the mechansim is leaking information about the members.

Another thing to note is that the attacker already has all the data of the target I. The only thing
the attacker is trying to learn is whether or not I’s data was included in the training data. In some
settings, once the attacker knows all the data of the user, it might seem like the privacy of that user is
lost, however in many cases the information about whether or not the target is in the dataset reveals
additional information beyond what is contained in I. For example, suppose the dataset x represents
users in a study of patients with diabetes, and their data is demographic information. Then an attacker
who knows a user’s demographic information, but not whether this patient has diabetes can infer whether
or not this user is in the dataset, which would potentially reveal that the patietn does have diabetes.

2.2 Lower Bounds via Membership Inference

In particular, we will use membership inference attacks to argue that the Gaussian mechanism cannot
be signi�cantly improved when the data domain is su�ciently large. In particular, we will focus on
the following special case of linear query release. The data domain will be x = (G1, . . . , G=) where
G8 ∈ U = {±1}: , corresponding to each user answering : yes or no questions,3 and we will ask a set of
exactly : linear queries of the form

∀9 = 1, . . . , : 59 (x) =
1
=

=∑
8=1

G8, 9 (4)

Note that these queries are a fancy way of asking for the mean of the dataset because when we de�ne
� (x) = (51(x), . . . , 5: (x)) then

� (x) = 1
=

=∑
8=1

G8 (5)

2Framingham, MA is famously the site of a multi-generational study on cardiovascular health, and a signi�cant fraction of
its residents participate in this study.

3Note that we will switch from our usual domain {0, 1}: to {±1}: because it will make the analysis slightly simpler, but
this change does not substantively a�ect any of the statements we will make.
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Observe that, for these queries, since the number of queries is : and the domain size is 2: , the
Gaussian mechanism adds noise ≈ :1/2/= and MWEM has worse error ≈ (:1/2/=)1/2, so when : � =2,
both algorithms fail to give any non-trivial error guarantee. We can in fact show that this is inherent for
any di�erentially private algorithm.

Theorem 2.2 ([BUV14, DSS+15]). For every = and : , there is a family of : linear queries over the data
domain {±1}: such that any (1, 1

10= ) di�erentially private algorithm must have error U = Ω(:1/2/=).

Proving this theorem would require introducing more machinery than we have time for, but instead
we will show how one can carry out a membership-inference attack against any mechanism that has
the form of the Gaussian mechanism, but with an insu�cient amount of noise. That is, the mechanism

" (x) = � (x) + N (0, f2 · I:×: ) (6)

for f = > (:1/2/=), which is (just barely) too small for us to argue that this mechanism is private.
First, since we’re proving lower bounds, we get to choose a distribution % for the data, and we’ll

choose to make % uniform over {±1}: . Now we will de�ne the attacker:
1. The input is the distribution % , the output ~, and the target point I.
2. Compute the test statistic ) = 〈~, I〉
3. If ) ≥ g , output IN, otherwise output OUT. Here, g is some threshold that we will set based on % .

Intuitively, the attacker is considering two possible worlds, one where the target is IN and one where
the target is OUT and designing some test statistic) that will distinguish between these two worlds. The
intuition for this choice is that, since ~ ≈ 1

=

∑=
8=1 G8 , when I is IN the dataset then ~ is like an average of

I with lots of other random points, and thus ~ should have some small correlation with I in expectation.
On the other hand when I is OUT of the dataset, ~ is an average of completely independent random
points, so ~ and I are uncorrelated in expectation. For example, in the very special case where = = 1,
then when I is IN the dataset we have ~ = I, so 〈~, I〉 = : but when I is OUT of the dataset then ~, I are
independent so 〈~, I〉 ≈

√
: .

In order to see what is going on, we can actually run the membership-inference experiment many
trials, and plot the distribution of the test statistic over these trials. This plot shows the results: Note

Figure 1: The distribution of the test statistic when I is IN (orange) and OUT (blue). Here = = 25, 3 = 100
and there is no noise added to the empirical mean.

that the distribution of the test statistic ends up being roughly like a Gaussian. Also, the variance is
roughly the same in the two case. The main di�erence is that the means are di�erent.
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Exercise 2.3. Prove that when f = 0 and I is OUT of the dataset, we have

E (〈~, I〉) = 0 and Var (〈~, I〉) = :

=

and that when I is IN the dataset, we have

E (〈~, I〉) = :

=
and Var (〈~, I〉) = :

= − 1
Conclude that we can distinguish IN from OUT with 90% accuracy when 3 ≥ �= for some constant =.

What we can show in general is that if f ≤ 2:1/2/= for some small constant 2 > 0, then the
membership-inference attack succeeds with 90% accuracy.

In order to prove Theorem 2.2 we need some additional ideas, but the attack strategy and the
high-level intuition is the same—we argue that when the error is > (:1/2/=), no matter what algorithm
we use to add the noise, the output ~ ≈ 1

=

∑=
8=1 G8 must be correlated with at least one of its inputs G8 in

a signi�cant and detectable way.

2.3 Membership Inference in Machine Learning

Machine learning currently provides one of the most interesting application domains for di�erential
privacy. Although most realistic models/algorithms for ML are too complex to precisely analyze
membership-inference attacks, that doesn’t mean they don’t happen! In fact, it’s possible to perform
membership inference against most of the large models used in ML today. These attacks also highlight
an interesting connection between membership-inference and over�tting to training data.

The standard thousand-foot view of machine learning is as follows:
• We have a distribution % over a data domiainU and we get a dataset x = (G1, . . . , G=) consisting

of = iid samples from % .
• We have a space of models Θ and a loss function L : Θ ×U → R that maps a model \ and a data

point % to some loss.
• Given the dataset x, we compute some \̂ that (approximately) minimizes the average loss on the
samples

1
=

=∑
8=1
L(\̂ , G8)

• We hope that
E
G∼%

(
L(\̂ , G)

)
≈ min

\ ∈Θ
E
G∼%

(
L(\̂ , G)

)
. That is, we hope that \̂ minimizes the loss on the distribution rather than just minimizing the
loss on the samples.

Just so this doesn’t look wildly abstract, a common example is linear regression where we have a
distribution % over pairs (G,~) ∈ R3 × R and we assume that ~ ≈ 〈\, G〉, so that the variable ~ is
approximately a linear function of the variables G . Our goal is to �nd \ that minimzes the squared loss

L(\, %) = E
G,~∼%

(
(〈\, G〉 − ~)2

)
Exercise 2.4. Suppose % is a distribution over R3 and we’d like to estimate its mean E (%). How can
we formalize this problem in the framework above? What is the set of possible models Θ and what loss
function L should we use so that the minimizer of the loss function is the mean?
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How can we perform membership inference attacks on machine-learning methods that output a
model \? At �rst glance it seems like it should require very intricate knowledge of the type of model, the
loss function, and the learning algorithm. However, Yeom et al. [YGFJ18] observed that a very simple
method generally works well by taking advantage of over�tting.

To see what is going on, consider the example of linear regression above. If we draw = ≤ 3 samples,
then there is a linear function \̂ such that ~8 = 〈\, G8〉 for every point, so L(\̂ , (G8 , ~8)) = 0 for every
sample (G8 , ~8). On the other hand, if we’re given a random (G,~) ∼ % then the loss is probably not
exactly 0. Thus, if we take the target point I and compute L(\̂ , I) we can probably tell whether I is IN
the dataset by checking to see whether the loss is 0 or non-zero. This example is a bit specialized, but
it’s an example of a more general phenomenon

All models arising in machine learning �t their training data better than they �t unseen data.

This phenomenon has far-reaching consequences that extend far beyond membership-inference, but for
our purposes it suggests the following membership-inference attack:

1. The input is the distribution % , the model \̂ , and the target point I.
2. Compute the test statistic ) = L(\̂ , I)
3. If ) ≥ g , output IN, otherwise output OUT. Here, g is some threshold that we will set based on % .

As before, we can see how this plays out for our example of linear regression by plotting the distribution
of the test statistic in the IN and OUT cases.

Figure 2: The distribution of the test statistic when I is IN (orange) and OUT (blue). Here = = 100, 3 = 40.
Observe that the loss for points IN the dataset is typically smaller than for those OUT of the dataset.

Summary

Key Points

• . . .

Additional Reading

• A survey on privacy attacks against aggregate statistics [DSSU17]
• Another technique for proving lower bounds against (Y, 0)-di�erentially private algorithms is

called packing, which was introduced in [HT10, BKN10]. See [Vad16] for a good introduction.
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