
Privacy in Statistics and Machine Learning Spring 2021
Lecture 17 & 18: Equilibrium in Zero-Sum Games

Adam Smith and Jonathan Ullman

As promised in Lecture 15, we’re going to see how many algorithms from query release �t into a
larger framework based on computing equilibrium in two-player zero-sum games. To start we’ll focus
on the mathematical background before we get back to query-release.

1 Two-Player Zero-Sum Games and the Minmax Theorem

You’ve all likely played a two-player zero-sum game before: Rock, Paper, Scissors. In case you aren’t
familiar, two players each get to choose an action from the set { rock, paper, scissors } and the game is
decided according to the rules rock-beats-scissors, scissors-beats-paper, paper-beats-rock, and the game
is a tie if the players each use the same action. What makes this game zero-sum is that one player’s loss
is the other player’s gain, and vice versa. Either the two players tie. Exactly one player wins and the
other loses.

In this lecture we’ll study the key concept of equilibrium in two-player zero-sum games, and then
discuss applications to query release. Mathematically, we can model a two-player, zero-sum game using
the following notation:

• There are two players, which we will name Rowena and Colin.
• Rowena has a set of actions R and Colin has a set of actions C.
• There is a payo� matrix " ∈ R |R |×|C | where "8, 9 represents the reward that Rowena gets from

Colin if she plays action 8 ∈ R and Colin plays action 9 ∈ C. Thus, −"8, 9 is the reward for Colin
given the same pair of actions.

What makes the game zero-sum is that Rowena “wins” "8, 9 and Colin “wins” −"8, 9 , so the amount the
two players win is always "8, 9 −"8, 9 = 0. Thus, the two players’ goals are directly opposed, Rowena
wants to maximize her reward and Colin wants to minimize her reward.

In this model, we can represent Rock, Paper, Scissors as a game where R = C = {1, 2, 3} with {1, 2, 3}
representing rock, paper, and scissors, respectively. The payo� matrix is

0 −1 +1
+1 0 −1
−1 +1 0

 (1)

where we assume that Rowena gets 1 from Colin if she wins the game and vice versa, and both players
get 0 in the event of a tie.

Even if you’re intuitively familiar with rock, paper, scissors, we’ll see the tools needed to understand
strategic behavior in games where the solution is less obvious, such as the simple game described by a
payo� matrix like this one. [

+2 −1
−2 +3

]
(2)

1

1.1 Who Goes First?

If you’ve played Rock, Paper, Scissors recently, you probably remember that both players typically
play simultaneously, and the game gets pretty uninteresting if one player has to pick an action �rst.
In general, suppose I require that Rowena goes �rst and let’s think about how she would choose her
action. Whatever action 8 ∈ R she takes, Colin will play the action 9 ∈ C that maximizes his rewards, or
equivalently that minimizes Rowena’s reward. Thus, if Rowena plays 8 , then Colin will choose the action
argmin9 "8, 9 and Rowena will get min9 "8, 9 . This is known as a best response for Colin. Thus, Rowena
should play 8 to maximize the amount she will get, knowing how Colin will respond to her action. In
particular, she should play argmax8 min9 "8, 9 and her reward will be max8 min9 "8, 9 . For Rock, Paper,
Scissors we all know that whatever Rowena plays, Colin has a way to win the game, so Rowena will
always lose if she has to go �rst. In other words,

max
8

min
9
"8, 9 = −1 (3)

Now, what if Colin goes �rst? By a completely symmetric argument, we know that whatever action
9 that Colin plays, Rowena will chose the action 8 to maximize her reward, thus Colin should play to
minimize Rowena’s reward knowing how she will respond. Thus, Rowena’s reward when Colin plays
�rst is going to be min9 max8 "8, 9 . For Rock, Paper, Scissors, if Colin goes �rst, then Rowena will always
win, or, in other words,

min
9

max
8
"8, 9 = 1 (4)

One simple fact is that for any two-player zero-sum game, you would prefer to be the player who
chooses their action second rather than the player who chooses their action �rst. In our notation, this
comes out as the following inequality.

max
8

min
9
"8, 9 ≤ min

9
max
8
"8, 9 (5)

Exercise 1.1. Prove (5).

1.2 Randomized Strategies and the Minmax Theorem

As we’ve seen, the game Rock, Paper, Scissors is pretty boring if require one of the players to go �rst.
What if we add randomization to the mix? That is, suppose Rowena still has to act �rst, but now Rowena
doesn’t have to pick a speci�c action 8 . Instead, she has to pick a probability distribution r over actions,
which we can represent as a column vector r ∈ Δ(R). Given this probability distribution over actions,
Colin will then get to choose a probability distribution c over actions, represented as a column vector
c ∈ Δ(C). We will sometimes call these distributions (randomized) strategies. One these two strategies
are chosen, the players sit back and watch while an action 8 is chosen according to r and an action 9 is
chosen independently according to c and Rowena wins "8, 9 .

Given a pair of strategies r, c, the expected payo� to Rowena is

E
8∼r
9∼c

(
"8, 9

)
=

∑
8∈R
9∈C

r8c9"8, 9 = r>"c (6)

where we will often use the matrix expression as a compact way of representing the expected payo� for
the pair of strategies (but won’t need any fancy linear algebra).

2

Using the same logic as before, if Rowena has to choose her strategy �rst, then she will choose r to
maximize her expected reward knowing that Colin will play a best-response, and she will get a payo� of

max
r

min
c

r>"c (7)

and similarly if Colin has to choose her strategy �rst, then he will choose c to minimize Rowena’s
expected reward, knowing that she will play a best-response, and then Rowena will get a payo� of

min
c

max
r

r>"c (8)

Let’s see what will happen in Rock, Paper, Scissors when Rowena goes �rst and chooses some
distribution r. Remember that r1 is the probability of playing rock, r2 is the probability of paper, and r3
is the probability of scissors. You all probably intuitively see that the best thing for Rowena to do is to
play the uniform distribution r = (13 ,

1
3 ,

1
3). In this case, no matter what strategy Colin plays, Rowena’s

expected reward is 0. Thus, for this game,

max
r

min
c

r>"c ≥ 0 (9)

It’s also not too hard to check that if Rowena plays any strategy other than the uniform distribution,
Colin has a response that makes Rowena’s expected reward strictly negative. Thus we have

max
r

min
c

r>"c = 0 (10)

Exercise 1.2. Prove that if Rowena plays any strategy other than r = (13 ,
1
3 ,

1
3) then Colin has a strategy

c such that r>"c < 0.

What happens if Colin plays �rst? By symmetry of the game, Colin also must play the uniform
distribution c or else Rowena will receive a strictly positive reward. Thus

min
c

max
r

r>"c = 0 (11)

So, at least for Rock, Paper, Scissors, as long as the players get to choose randomized strategies, it
doens’t matter who has to pick their strategy �rst! It turns out that this isn’t speci�c to Rock, Paper,
Scissors, and is actually true for any two-player, zero-sum game. This fact is what’s known as the
celebrated minmax theorem, due to John von Neumann.

Theorem 1.3 (Minmax Theorem [vN28]). For any two-player zero-sum game with payo� matrix" ,

max
r

min
c

r>"c = min
c

max
r

r>"c = val(") (12)

where the quantity val(") is called the value of the game.

In particular, a pair of strategies (r, c) such that r>"c = val(") are called an equilibrium of the
game in the sense that neither player can improve their payo� by changing their strategy. A strategy r
such that minc r>"c = val(") is sometimes called a minmax strategy and, unsurprisingly, a strategy c
such that maxr r>"c is sometimes called a maxmin strategy.

The relatively easy part of the minmax theorem is showing that Rowena does at least as well if she
chooses her strategy second as she does if she chooses it �rst.

3

Exercise 1.4. Prove the “easy” direction of the minmax theorem,

max
r

min
c

r>"c ≤ min
c

max
r

r>"c (13)

In the next lecture we’ll prove the much harder part of the minimax theorem, which says that
Rowena can do just as well if she goes �rst. While there are lots of ways to prove this theorem, we will
show a cool proof that deduces the minimax theorem as a consequence of the existence of no-regret
online learning algorithms! In addition to being very simple (now that we’ve done all the hard work
of proving that no-regret learning is possible), this proof will also give us some nice, computationally
e�cient algorithms for computing val(") and �nding equilibrium strategies.

Exercise 1.5. Suppose players take turns playing a best response to one another’s strategy (which is
sometimes called best-response dynamics). Rowena chooses some action r1, then Colin best-responds
with c1 = argminc A>1 "2 , then Rowena best-responds with r2 = argmaxr r>"c1, and so on. Speci�cally,

cC = argmin
c

r>C "c and rC = argmax
r

r>"cC−1

What will happen in this process as C →∞? Will rC and cC converge to an equilibrium of the game?

1.3 Proof of the Minmax Theorem

We’re now going to prove the “hard” direction of Theorem 1.3, which informally says that Rowena can
always do just as well if she has to choose her action �rst than she could if she chose her action second.
Or, in our notation

max
r

min
c

r>"c ≥ min
c

max
r

r>"c (14)

Our proof is going to rely on the existence of no-regret learning algorithms in a cute way. Let’s start
by de�ning two sequences of distributions on actions r1, . . . , r) ∈ Δ(R) and c1, . . . , c) ∈ Δ(C), one for
Rowena and one for Colin. Analogous to how we de�ned no-regret learning, we’ll say that Rowena’s
sequences of actions has regret U to Colin’s sequence if Rowena could not improve her reward by more
than U per round by using some �xed alternative action r and likewise for Colin.

1
)

)∑
C=1

r>C "cC ≥ max
r

1
)

)∑
C=1

r>"cC − U (15)

and
1
)

)∑
C=1

r>C "cC ≤ min
c

1
)

)∑
C=1

r>C "c + U (16)

Note that having low regret is a property of the pair of sequences, although just for linguistic convenience
we will sometimes simply describe one of the sequences as having low regret.

We’ll ignore for now how we can obtain sequences that have no regret, but, perhaps unsurprisingly,
we can obtain them using no-regret algorithms.

Fact 1.6. For any two-player zero-sum game, and every) , there exists a pair of sequences of distributions
over actions r1, . . . , r) and c1, . . . , c) that have regret at most U) to one another. Moreover, we can make U)
arbitrarily close to 0 by taking) large enough.

4

Given these sequences, we will construct a single strategy for each player by taking the average
strategy used by each player in the sequence. Speci�cally,

r̂ =
1
)

)∑
C=1

rC and ĉ =
1
)

)∑
C=1

cC (17)

Now that we have these strategies, we can show the following.

max
r

min
c

r>"c ≥ min
c

r̂>"c (18)

= min
c

1
)

)∑
C=1

r>C "c (19)

≥ 1
)

)∑
C=1

r>C "cC − U (By (16))

≥ max
r

1
)

)∑
C=1

r>"cC − 2U (By (15))

= max
r

r>" ĉ − 2U (20)

≥ min
c

max
r

r>"c − 2U (21)

Therefore we have statement we want, except for this small error of 2U . However, since we can take the
regret bound U to be arbitrarily small by taking) arbitrarily large, we get the desired statement! That is,

max
r

min
c

r>"c ≥ min
c

max
r

r>"c (22)

This completes the proof of the “hard” direction.

Obtaining (approximate) equilibrium strategies. One important observation is that the proof
actually gives us a bit more than just the statement that there exists an equilibrium, speci�cally it
says that if r1, . . . , r) and c1, . . . , c) each have regret U to one another, then (r̂, ĉ) are 2U-approximate
equilibrium strategies, meaning that

min
c

r̂>"c ≥ val(") − 2U and max
r

r>"c ≤ val(") + 2U (23)

Thus �nding, no-regret strategies actually gives us a way to compute (approximate) equilibrium of
two-player zero-sum games.

Exercise 1.7. Prove the statement above that (r̂, ĉ) are 2U-approximate minmax strategies.

1.4 Finding No-Regret Strategies

Now that we know the importance of no-regret strategies, we can look at methods for computing them.
There are two particularly useful ones, which can be mixed and matched (i.e. Rowena can use one
approach and Colin can use another). We’ll consider both of these from Rowena’s perspective, but the
analogous method works for Colin, by symmetry.

5

1. Best response. Suppose that when Colin plays a strategy cC , Rowena plays a best-response
strategy rC = argmaxr r>"cC . (Note that, without loss of generality, rC can be a deterministic
strategy.) Then we can show

1
)

)∑
C=1

r>C "cC =
1
)

)∑
C=1

max
r

r>"cC ≥ max
r

1
)

)∑
C=1

r>"cC (24)

More generally, Rowena can play an U-approximate best-response, which is any strategy rC such
that r>C "cC ≥ maxr r>"c − U . Playing U-approximate best-responses leads to a strategy with
regret at most U .

2. No-regret learning. Suppose that Rowena uses a no-regret learning algorithm, such as multi-
plicative weights, to select strategies r1, . . . , r) . That is, we generate a sequence of losses ℓC ∈ R |R |
giving a loss for each action Rowena can take by setting ℓC = −"cC . If Rowena uses an algorithm
that guarantees regret at most U to any sequence of losses, then Rowena’s resulting sequence of
strategies r1, . . . , r) will have regret at most U to Colin’s sequence c1, . . . , c) .1

Exercise 1.8. Prove that Rowena can achieve regret U to any sequence of strategies by Colin by either
playing an U-approximate best-response or by using an online learning algorithm with regret at most U .

2 Applications to Query Release

The reason zero-sum games are relevant for query release is because we can write the following query-
release game. Suppose we have a dataset x ∈ U= with |U| = < and a set of linear queries 51, . . . , 5:
de�ned by predicates i1, . . . , i: : U → [0, 1]. We’ll assume that the set of queries is closed under
complement so that for every query i 9 , the query 1 − i 9 is also in the set. We can de�ne the following
two-player zero-sum game:

1. Rowena will be the query player and her action set is R = [:].

2. Colin will be the data player and his action set isU.

3. For a pair of actions (8, I) for 8 ∈ [:] and I ∈ U, Rowena’s payo� is

"8,I = 58 (x) − i8 (I) (25)

Let’s make a couple of observations about the game. First, the sets of actions for each player depend
only on the set of queries, and not the data. However, the payo� matrix depends on the dataset x. In
particular, if we let x, x′ be neighboring datasets, and "," ′ be the corresponding payo� matrices, then
for every 8 ∈ [:] and I ∈ U,

|"8,I −" ′8,I | = |58 (x) − 58 (x′) | ≤ 1/=.

Second, we can analyze the equilibria of this game. Notice that, since Colin’s actions are data-
domain elements in U, thus a randomized strategy c ∈ Δ(U) for Colin is a distribution over data-
domain elements. That is, Colin’s randomized strategies are just histograms corresponding to datasets!

1Note that the no-regret algorithms that we’ve seen assume that the loss vectors are in [0, 1] |R | , so we need that the payo�
matrix " has entries bounded in [0, 1] to apply those algorithms directly. However, by shifting-and-scaling the losses, we can
get no-regret strategies for any game with payo�s bounded in [−0, 0] with a dependence on 0 in the regret bound.

6

Therefore, Colin always has a randomized strategy that ensures Rowena’s payo� is at most 0, simply
play c = x. If Colin does so, then no matter what Rowena plays,

r>"x = E
8∼r
(58 (x) − 58 (x)) = 0 (26)

Thus, the value of the game is at most 0 and it’s not too hard to see that it is, in fact, exactly 0, because
the queries are closed under complement. That is,

max
r

min
c

r>"c = min
c

max
r

r>"c = 0 (27)

Given that the value of the game is 0, we know that any (U-approximate) equilibrium strategy for
Colin is a distribution x̂ ∈ Δ(U) such that

max
8
58 (x) − 58 (x̂) ≤ max

r
E
8∼r
(58 (x) − 58 (x̂)) = max

r
r>" x̂ ≤ U (28)

Again, because the queries are closed under complement, we also have the same bound on max8 58 (x̂) −
58 (x). Therefore we have the following key fact

Fact 2.1. For any dataset x and any set of linear queries, if x̂ is an U-approximate equilibrium strategy for
Colin, then, x̂ represents a dataset such that

max
8
|58 (x) − 58 (x̂) | ≤ U (29)

2.1 Algorithms for Query Release via Equilibrium Computation

To summarize the last section: equilibrium strategies for Colin in the query-release game correspond
to accurate synthetic datasets! Using this fact, and our observations about how to �nd equilibrium
strategies in the query-release game, we can �nd lots of interesting algorithms that represent many of
the state-of-the-art approaches to private query release, including MWEM and other algorithms we
haven’t studied yet. In each of these cases, we have to use special steps and observations to make sure
that the game is solved in a way that is private (with respect to the dataset x de�ning the payo� matrix).

2.1.1 MWEM as an Equilibrium Computation

Recall that MWEM has the following structure (some details omitted):

1. Initialize the strategy of the data player (Colin) to be the uniform distribution, c1 = (1< , . . . ,
1
<
).

2. For C = 1, . . . ,) :

(a) The query player (Rowena) uses the exponential mechanism to choose some

8C ≈ argmax
8

58 (x) − 58 (cC)

(b) The data player (Colin) uses a multiplicative-weights update and sets a new strategy

cC+1,I = � · cC,I · (1 − [)−i8C (I)

where � is some constant to ensure that cC+1 is a probability distribution.

7

At a high level, we can see that Colin is playing a no-regret strategy and Rowena is playing approximate
best response. Thus, if we run this algorithm for large) (with a suitable choice of [) then it should
converge to an approximate equilibrium. Meaning that the average of Colin’s strategies, x̂ = 1

)

∑)
C=1 cC

will be an accurate synthetic databases.
In order to ensure privacy, we need to make sure that the actions of Rowena are made private, which

we can achieve using the exponential mechanism. The actions of Colin, once we release the actions of
Rowena, don’t actually depend on the sensitive data, so we don’t have to do anything in addition to
make them private.

There is, however, one more small trick we slipped in here. Notice that we make the updates using
the loss vector ℓC = i8C (I). However, to get a no-regret strategy for Colin, we should be using the loss
vector ℓCi8C (I) − 58C (x). However, these loss vectors depend on the dataset, and thus we’d need to use
some additional steps to preserve privacy that would compromise accuracy. However, notice that using
the “proper” losses would scale cC+1,I by a factor of (1−[) 58C (x) , which is independent of I. Thus, adding
this extra term to the loss vector would simply be cancelled out by the renormalization to make cC+1 a
distribution! So we may as well not include this factor in the updates to avoid costing privacy.

2.1.2 The Dual Query Algorithm

Now that we have the tools to �t MWEM into a general framework of privately computing equilibria of
the query-release game, we can try other approaches for computing equilibrium in this game, many of
which have nice properties. One such approach is called DualQuery [GAH+14]. Roughly speaking, the
algorithm swaps the approach for Rowena and Colin—Rowena will now play a no-regret strategy based
on multiplicative weights while Colin will play best-responses. At a high level the algorithm has the
following form:

1. Initialize the strategy of the query player (Rowena) to be the uniform distribution, r1 = (1: , . . . ,
1
:
).

2. For C = 1, . . . ,) :

(a) The query player (Rowena) takes samples 8C,1, . . . , 8C,(, for some parameter (, from the distri-
bution rC . Let r̃C be the uniform distribution over these samples.

(b) The data player (Colin) returns the deterministic action

GC = argmin
I

E
8∼r̃C
(−i8 (I))

(c) The query player (Rowena) uses a multiplicative weights update based on GC to obtain a new
strategy rC+1.

At a high-level, Colin is playing best responses, whereas Rowena is using a no-regret sequence, so at
the end of the game, x̂ = (G1, . . . , G)), which represents the average of Colin’s actions G1, . . . , G) , should
be a synthetic dataset with error U . But there are a number of complications. First, Colin is not quite
playing a best response, again because the term 58 (x) is missing. However, since 58 (x) doesn’t depend
on the choice of I, whether or not it is included doesn’t a�ect Colin’s optimization problem, so we can
simply not include it to avoid having Colin’s response depend on private data.

Second, Colin is not quite playing a best-response to Rowena’s strategies rC , but to an approximation
r̃C . However, if we choose (large enough, then rC and r̃C will be close in a strong sense, so whatever
Colin chooses will be close to a maximizer for Rowena’s true distribution rC , and thus Colin is playing
approximate best responses to Rowena’s distributions.

8

Last, we need to do something to ensure privacy. It’s actually not obvious as the algorithm is
described that we’ve done anything to make it private. However, the sampling step is the key. What’s
not obvious without carefully studying the distribution rC obtained by multiplicative weights updates
is that it has a nice form where changing the dataset from x to a neighboring x′ does not change the
distribution rC much at any point in the algorithm. As a result, we can argue that, for an appropriate
choice of (, the samples, and thus the approximate distribution r̃C is actually di�erentially private!

The key advantage of using this algorithm is that Colin’s optimization problem

argmin
I

E
8∼r̃C
(−i8 (I))

is independent of the private data. Thus, even when we have to choose I from an extremely large
set, we can use various heuristic solvers (e.g. SAT-solvers, integer programming solvers like CPLEX,
or optimizers based on gradient descent) in an “o�-the-shelf” way without concern for privacy. The
heuristic solvers may or may not actually produce best responses, but the algorithm will be private.

Additional Reading and Watching

• . . .

References

[GAH+14] Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and Zhiwei Steven Wu.
Dual query: Practical private query release for high dimensional data. In ICML, 2014.

[vN28] John von Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295–
320, 1928.

9

