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1 From Query Release and Synthetic Data to Two-party Games and
Online Learning

Over the last two lectures, we saw a general framework for answering a set of queries by adding noise to
some linearly-transformed version of the query answers. Over the next few lectures, we’ll see a general
framework for performing query release via synthetic data generation, and a framework for synthetic
data generation via online learning.

The connection between synthetic data generation and query release is fairly straightforward. Given
a set � of queries we want to release, the idea is to use a di�erentially private algorithm to generate a
“fake” data set x̃ that is similar to the original data set x with respect to the frequencies of all the queries
in � . Anyone who wants to know the answer to a query 5 on x can instead run the query on x̃ and use
that answer instead.

The factorization/projection algorithm we saw in the last two lectures does not automatically
generate synthetic data consistent with its query answers.

We will see algorithms that do generate this type of data and that come with clean guarantees on the
error with which they preserve query answers. The �rst is multiplicative-weights-using-the-exponential-
mechanism (abbreviated MW-EM and sometimes pronounced “em-wem”). To understand how it works,
though, we will �rst need to understand the task of online learning, also called online decision-making
(Section 2) along with a famous algorithm for online learning called multiplicative weights (MW) in
Section 3.

Armed with the MW algorithm, we will see a �rst connection between online learning and synthetic
data generation. That connection will lead us to MW-EM. We will then see a slightly more general
version of the connection in terms of algorithms that seek to solve a particular two-player zero-sum
game. The following �gure gives a high-level overview of the big pieces that we will �ll in.
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Let’s start with online learning.

2 Online Decision-Making: De�nitions and Warm-Up

Online learning is a stylized model of decision-making that has provided powerful tools in optimization,
game theory and other areas of computer science.
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As a simple example, suppose you have a small amount of money to invest in the stock market and
you start looking into some particular stock, say something stable like GameStop (GME). Should you
buy it? Fortunately, advice from “experts” on the Internet abounds. You decide that each day you will
consult : di�erent newsletters, each of which o�ers a recommendation to buy or sell. Each day you
will follow the advice of one of the : newsletters. At the end of the day, you’ll know if you should have
bought or sold, and thus which of the : newsletters gave good advice that day. You could assign to
each of them a “cost” for the day—say 0 for a good recommendation, and 1 for a bad one. You’d like an
algorithm to help you decide whose advice to follow so that, after ) days, you’re reasonably happy with
your choices. Speci�cally, you’d like to look back at the costs of the : newsletters over those ) days
and know that you made the right decision at least (roughly) as many times as the best newsletter in
hindsight.

As a somewhat more complex example, suppose that each day you have the choice of : di�erent
stocks to invest in. You’ve given up on the newsletters—even the best one wasn’t that great. Instead,
you’d like to base your decisions on the stocks’ past performance. Each day, you decide how to spread
a $1 investment among the : stocks. Your strategy for day C is described by a portfolio vector pC that
lists what fraction of your dollar went into each of the : stocks. Notice that we can think of pC as a
probability distribution over stocks. At the end of the day, each stock 0 will go up or down, leading to a
cost 2C0 for investing that stock (if the stock goes up, your cost will be negative). Your overall cost will be
the weighted sum of the stocks’ costs, which we can write as an inner product

〈
cC , pC

〉
=

∑
0 2

C
0?

C
0 .

The following abstraction turns out to be tremendously useful, and captures both settings above.
There is a game between two players: a decision maker D and an adversary A. In each round, the
decision maker selects among a set of : actions� = {1, ..., :} (written [:]) and the adversary picks a cost
in [0, 1] for each action. D doesn’t know the costs ahead of time, and the adversary doesn’t necessarily
know exactly which action D will choose. However, we want to model as rich a set of situations as
possible, so we will assume that the adversary knows D’s strategy. One way to think of this is that at
each round, D selects a distribution over actions pC , and the adversary selects the costs knowing pC . We
get the following game:

Online Learning Game

For C = 1, 2, ...,) , do:

• D selects distribution pC over actions � = [:]
(so pC ∈ [0, 1]: with

∑
0 ?

C
0 = 1)

• Adversary A sees pC and picks cost vector cC ∈ [0, 1]: .

• An action 0C is chosen according to pC and D pays cost 2C
0C

.
We generally focus on the expected cost E

0∼pC
(
2C0

)
=

〈
cC , pC

〉
.

• D learns the entire cost vector cC

Measuring Performance Via “Regret” D’s goal is to keep her cost as low as possible. How can
we understand how well she is doing? Since the adversary is picking the costs, it can always create a
situation where every action has high cost. So D cannot hope to have low cost in general.

Perhaps, instead, we could get some kind of relative guarantee: we could compare the cost that
D pays in some execution of the algorithm to a baseline that depends on the costs that the adversary
actually chose.
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One idea is to askD to match the cost of the best sequence of actions 01, 02, ..., 0) for the sequence of
cost vectors that actually arose. But that is also an impossibly high standard. For example, the adversary
could choose, at each round, one action at random to have cost 0 and set the costs of all other actions to
1. No matter how D makes her choices, she will have expected cost close to ) even though in hindsight
there will be a sequence of actions with cost zero!

The general idea is not hopeless though. Instead of competing with the best possible sequence in
hindsight, we can ask D to do well with respect to the best single action in hindsight.

De�nition 2.1. (Regret) In a particular execution of the game described by cost vectors c1, ..., cC and
actions 01, ..., 0C , the decision-maker D’s regret is the di�erence between her realized costs and the best
single action in hindsight. We normalize by averaging over the steps of the algorithm:

Regret = 1
)

)∑
C=1

2C
0C︸    ︷︷    ︸

realized cost

− min
0∗∈[: ]

1
)

)∑
C=1

2C0∗︸    ︷︷    ︸
cost of 0∗

in hindsight

. (1)

This looks a lot like our de�nition of excess risk in optimization problems, and indeed they are
connected. But the online setting comes with an important subtlety: the cost vectors are not de�ned
until after the game has been played. The most interesting applications of online learning algorithms
are exactly those where this cost vector re�ects some hard-to-predict process.

The regret can be at most 1, since we’ve normalized the costs to lie in [0, 1], and since we are looking
at the average cost over all ) days. So a regret close to 0 would be a useful guarantee. Surprisingly,
there are algorithms that ensure that the regret is very small indeed. The main result we’ll see is an

algorithm for online learning, dubbed multiplicative weights, whose expected regret is $
(√

ln(:)
)

)
for

any adversary. Algorithms whose regret guarantee goes to 0 with ) are called “no-regret” algorithms,
and have applications in many areas of computer science from linear program solvers to improved
stochastic gradient descent to auction design.

An Algorithm That Doesn’t Work: Follow The Leader To get a sense of why online learning
isn’t easy, let’s look at an algorithm that doesn’t work, dubbed “Follow the Leader”. At each stage, the
decision maker selects the action that has had the lowest cost so far, breaking ties arbitrarily:

Algorithm 1: Follow the Leader
1 Select action 01 = 1 ;
2 for C = 2, 3, ..,) do
3 Receive cost vector cC−1 ;
4 Select action 0C = argmin0∈[: ]

∑C−1
8=1 2

8
0 ;

5 (That is, pick action whose overall cost was lowest up until
now. In case of a tie, choose the lowest-numbered action
that minimizes the cost so far.)

How well does this strategy do in general? Pretty terribly, it turns out. Notice that the average
regret can be at most 1. The “follow-the-leader” strategy can have regret pretty close to that. Even with
just two decisions, the algorithm can have regret 1/2.
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Here is one way that can happen. The adversary will simply alternate between the cost vectors
c1 = (1, 0) and c2 = (0, 1). The adversary picks c1 = (1, 0) as the �rst cost vector, so D pays a cost of 1
for its �rst action 01 = 1. In the second round, D plays action 2 (since it had cost 0 in round 1) but the
adversary selects c2 = (0, 1); again, D pays a cost of 1. In the third round, D plays action 1 (since the
two actions are tied based on the costs so far), and the adversary plays c3 = (0, 1). In every single round,
the decision maker ends up making exactly the wrong decision! Over ) rounds, the decision maker will
have cost ) , but the best action in hindsight will have cost at most ) /2.

What’s going on is that the deterministic follow-the-leader algorithm is thrashing and always
making the worst choice in a given round. How can we avoid that sort of behavior? The answer is to
randomize our strategy. There are a few ways to add this randomization. We’ll see a classic method,
called multiplicative weights.

Exercise 2.2 (Online Learning Requires Randomization). Show that for every method D that plays
deterministic actions (where pC puts probability 1 on a single action) there is an adversary for which
D’s average regret is at least 1 − 1

:
.

Exercise 2.3 (
√
ln(:)/) lower bound). Show that for any method (randomized or not), if the adversary

picks cost vectors un�ormly at random in {0, 1}: , the expected regret will be Θ
(√

log(:)/)
)
. (Hint: The

expected cost paid by the algorithm is exactly ) /2. Show that in hindsight, with probability at least
1/2, one of the choices will have cost less than )

2 − Ω(
√
) ln(:)). You might need a basic fact about a

binomially-distributed random variable - ∼ Bin(), 12 ): for every B > 1, the probability that - > 1
2 +

B√
)

is roughly 4−$ (B2) .

3 Multiplicative Weights

Even though the Follow-the-Leader algorithm did badly, it felt like it had almost the right idea. It was
just too extreme in its decisions. We’d like to modify it to follow two general principles:

We should base our decision on the past performance of the various actions, with actions
that did well so far getting higher probability than actions that had higher costs. Actions
that did not have the best loss so far should still get nonzero probability. (Exercise 2.2 shows
that we need a randomized algorithm to get any reasonable regret bound.)

At any given time step C , let 2<C0 denote the sum of the costs experienced so far by a given action
0. We would like to de�ne probabilities ?C0 that decrease with this sum, but don’t over�t too heavily.
Inspired by the exponential mechanism, we can select a given action with probability exponentially
small in the loss experienced so far. Let [ < 1 be a parameter (called the learning rate, and playing a
similar role to the [ in gradient descent):

?C0 ∝ (1 − [)2
<C
0 = (1 − [)(total cost of 0 so far) (2)

We obtain the following algorithm1:
1There are a few essentially equivalent versions of the update algorithm. One common form of the algorithm updates

weights asFC+1
0 = FC

0 (1 − [2C0). The analysis is essentially the same as the variant presented here.
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Algorithm 2: Multiplicative Weights MW([)
1 Initialize all weights to 1: F1

0 for 0 = 1, 2, ..., : . ;
2 for C = 1, 2, ...,) do
3 Compute / C =

∑:
0=1F

C
0 ;

4 Use the distribution pC = wC// C ;
/* Adversary picks cost vector cC based on pC. */
/* D’s expected loss is

〈
cC , pC

〉
. */

5 Receive cost vector cC ∈ [0, 1]: ;
6 Update weights wC+1 with the formulaFC+1

0 = FC
0 · (1 − [)2

C
0 ;

/* Observe that FC+1
0 = (1 − [) (

∑C
8=1 2

8
0) = (1 − [)(total cost of 0 so far) */

Theorem 3.1. MW([) has expected regret at most 2
√
ln(:)/) for every adversary when [ =

√
log(:)/) .

Proof. Let’s assume that ) is big enough so that [ ≤ 1/2 (otherwise the bound is vacuous anyway).
The idea of the proof is to look at how /C evolves over the execution of the algorithm. Notice that

/C cannot increase as C grows since the weights get reduced. .
The idea is to show to two basic facts:

1. Whenever D has high expected cost, /C decreases a lot.

2. If there is a good action 0∗ in hindsight, then the �nal weight /)+1 is large.

Putting these together, we’ll conclude that if there is a good action in hindsight, then D’s average
expected loss will be small!

Claim 1. For each C , let EC be the expected cost paid by D at time C , that is EC def
=

〈
cC , pC

〉
. Then

/C+1 ≤ 4−[E
C · /C .

To prove the claim, let’s try to get an upper bound on /C+1:

/C+1 =
∑
0

FC+1
0 =

∑
0

FC
0 · (1 − [)2

C
0 (3)

≤
∑
0

FC
0 (1 − [2C0) (Using the fact that (1 − [)G ≤ 1 − [G for [ ∈ [0, 12 ] and G ∈ [0, 1]) (4)

=

〈
wC , ®1 − [cC

〉
(5)

= /C ·
〈
pC , ®1 − [cC

〉
(6)

= /C
(
1 − [EC

)
(7)

≤ /C · 4−[E
C (8)

We know that /1 = : since all the weights are initialized to 1. By induction, we can bound /)+1 as a
function of D’s total expected loss. Using the fact that /1 = : , we get:

/)+1 ≤ /1 ·
∏
C

4−[E
C

= : · 4−[
∑

C E
C

. (9)

Claim 2. For every 0∗, /)+1 ≥ (1 − [)(total cost of 0∗) ≥ 4 (−[−[2)(total cost of 0∗) .
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This claim is simpler: /)+1 is the sum of the weights, and so /)+1 ≥ F)
0∗ = (1−[)(total cost of 0∗). Using

the fact that (1 − G) ≤ 4−G−G2 for G ∈ [0, 1] gives us the bound we want.

Combining the two claims: Let 0∗ be the best action in hindsight for a particular execution, and let
$%) =

∑
C 2

C
0∗ be its total cost. We can apply Claims 1 and 2 to relate $%) to the total expected loss:

4 (−[−[
2)$%) ≤ /)+1 ≤ : · 4−[

∑
C E

C

.

Taking logs on both sides, and �ipping the sign:

([ + [2)$%) ≥ [
∑
C

EC − ln(:)

We can rearrange the terms above, and use the fact that $%) is at most ) :(
1
)

∑
C

EC

)
− $%)

)
≤ ln(:)

[)
+ [ · $%)

)
≤ ln(:)

[)
+ [ . (10)

The expectation of the left-hand side above is exactly the expected regret: each EC measures the expected
regret at time C conditioned on the previous outcomes, and$%) /) is the average cost of the best choice
in hindsight. Setting [ =

√
ln(:)/) , we get a bound of 2

√
ln(:)/) on the expected regret. �

3.1 Variations on the analysis of MW

Let’s take some time to think about how we can modify the analysis above.

Exercise 3.2. Suppose we know ahead of time that there is a perfect choice 0∗ that always has cost 0.
Show that we can set [ so that the algorithm achieves total cost at most 2 ln(:). (Be careful: our proof
required [ to be at most 1/2.)

Exercise 3.3. Show that if we know $%) ahead of time, we can set [ to get an average cost of at most
$%)
)
+ 2

)

√
ln(:) ·max($%), ln(:)).

Exercise 3.4. Theorem 3.1 requires us to know the number of steps) ahead of time. Show that one can
modify the algorithm to adapt automatically to the length of the process. Speci�cally, there is a standard
trick known as “repeated doubling”: we start the algorithm assuming we will run for )0 = 4 ln(:) steps.
If the number of steps exceeds )0, we restart the algorithm assuming a length of )1 = 2)0. If the number
of steps exceeds )0 +)1, we expand our time horizon to )2 = 2)1, and so on. Show that this variation
achieves average regret $

(√
ln(:)/)

)
of ) (without knowing ) ).

Exercise 3.5. How important is the fact that probabilities of higher-cost actions be selected with
exponentially small probability? Consider an algorithm that, at each time C , selects action 0 with
probability that scales polynomially in its cost so far 2<C0 . Speci�cally, suppose ?C0 ∝ 1

1+2<C0
. Show a

sequence of cost vectors on which the algorithm has expected average regret at least Ω(:/) ) (one can
prove a stronger bound; but even this bound hightlights the bad dependency on :).

3.2 From distributions over actions to vectors

Instead of thinking of the decision maker D as taking a single action distributed according to pC at each
round, we will sometimes want to think of it as playing a portfolio of actions described by pC . If costs
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add up across actions and are proportional to the weight placed on each action, then the realized cost is〈
cC , pC

〉
, the same as the expected cost was when choosing a random action according to pC .

For instance, in the example of stock investment that we started with, there’s no reason to choose a
single stock randomly—an investor can instead spread their money across many stocks, proportionally
to pC . Their realized loss or gain is then the sum across stocks of the change in value.

Our online algorithm for choosing actions thus becomes a powerful tool for optimization, when the
space of feasible solutions is the space of distributions over [:], called the probability simplex Δ( [:]).
When the output is viewed as a portfolio for each round, the MW algorithm is deterministic, so we can
get a bound on the regret that holds with probability 1 (and not just a bound on expected regret). It also
makes sense to state the regret as a comparison to the best distribution in hindsight, rather than the best
�xed action. (The best distribution can always be taken to be a �xed action, but having a more general
statement is useful in several applications.)

Theorem 3.6 (MW Updates as Distributions). For every adversary in the online learning game: If
p1, c1, p2, c2, ..., p) , c) is the sequence of distributions in Δ( [:]) and cost vectors in [0, 1]: that arise in an
execution of", ([), then for every distribution p∗ ∈ Δ( [:]), the regret with respect to p∗ is bounded by
2
√
ln(:)/) , that is,

1
)

)∑
C=1

〈
cC , pC

〉
︸          ︷︷          ︸

realized cost

≤ 1
)

)∑
C=1

〈
cC , p∗

〉
︸          ︷︷          ︸

cost of p∗ in hindsight

+2
√

ln(:)
)

.

We’ll see the power of this alternate view when we come to apply it to synthetic data release.

Additional Reading and Watching

• The multiplicative weights algorithm is often introduced via a slightly di�erent setting, in which
the : experts are o�ering binary recommendations (e.g., buy or sell). In that setting, multiplicative
weights can be thought of as taking a weighted majority vote (with the same weights as we have
here).

• The survey of Arora, Hazan and Kale [AHK12] covers the multiplicative weights alorithm and a
number of its applications.

• The algorithm is covered in many courses. Some easy-to-read lecture notes include those of
Roughgarden (Winter 2016), Ene (Spring 2020) and Roth (Spring 2021). The book of Cesa-Bianchi
and Lugosi provides a comprehensive but denser treatment [CBL06].

• The connection between MW and two-party games was laid out in the paper of Freund and
Schapire [FS96]. The connection is also covered by Blum and Mansour in [NRTV07, Chapter 4].

• The idea of using synthetic data release for DP query release originated in [BLR08]. The connection
between online decision-making and DP query release emerged in a series of papers (e.g., [DRV10,
RR10, HR14, HLM12]) and lies at the heart of many recent advances in synthetic data generation.
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