
Privacy in Statistics and Machine Learning Spring 2021
Lecture 11: Empirical Risk Minimization

Adam Smith and Jonathan Ullman

1 Optimization for Fitting Models

For many natural problems in machine learning and statistics, the output we desire can phrased as
minimizing some loss function de�ned by the data set. For example, the mean of a set x of numbers
G1, ..., G= ∈ R is the number ` that minimizes the sum of the squares1 of the di�erences between ` and
the G8 ’s:

` (x) = argmin
F∈R

!(F ; x) where !(F ; x) = 1
=

=∑
8=1
(F − G8)2 .

The notation “argminF∈W !(F)” denotes a minimizer of the function ! in the setW, if a minimizer
exists. If there is no minimizer, such as in the expression “argminF∈RF” or “argminF∈(0,1) ln(F)”, then
the notation is not de�ned.

Similarly, one way to de�ne the median is as a minimizer of the function !(F ; x) = 1
=

∑=
8=1 |F − G8 |.

This view of the median comes up in the exponential-mechanism algorithm for the median developed
in Homework 2.

In classical problem of ordinary least squares linear regression, each data point is a pair (G8 , ~8)
where G8 ∈ R3 and ~8 ∈ R. Our goal is to �nd a a vectorF in R3 such that 〈F, G8〉 ≈ ~8 for all 8 , where
〈F, G〉 denotes the inner product 〈F,3〉 = ∑3

9=1F (9) · G (9). Speci�cally, we seek to minimize

!(F ; x) = 1
=

=∑
8=1
(〈F, G8〉 − ~8)2 .

Empirical Risk Minimization (ERM) for Decomposable Losses These examples �t a general
framework: there is a loss function !(F ; x) which takes a parameter vector F and a dataset x ∈ U= .
Many loss functions arising in statistics and ML are decomposable, meaning they can be written as a
sum of terms, where each term depends on at most one of the G8 ’s, as follows:

!(F ; x) = 1
=

=∑
8=1

ℓ (F ;G8)︸ ︷︷ ︸
“individual

losses”

+ Λ(F)︸︷︷︸
“regularizer”

. (1)

The terms in the sum are called individual losses and the last term '(F), which depends only onF but
not the data, is called the regularizer.

In general, suppose we are given a loss function ℓ and a feasible set C ⊆ R3 of acceptable parameters
F . For example, we might need the entries ofF to be nonegative, or we might insist on a solution with
norm ‖F ‖ ≤ 1. The problem of minimizing !(F ; x) on C is called empirical risk minimization. Given an
output F̂ , we measure success by the “excess risk”,

Excess empirical risk at F̂ : !(F̂) −minF∈C !(F ; x) (2)
1To see why the mean really minimizes sum of squared distances, notice that the derivative of ! with respect to F is

!′(F) = ∑=
8=1 2(F − G8) = 2(=F − ∑=

8=1 G8). This last expression is 0 exactly when F is the mean. Since ! is di�erentiable
everywhere and increases whenF tends to either −∞ or +∞, the value where the derivative is 0 is the unique minimizer of !.

1

Population Risk We will focus hereon empirical risk, but it often makes sense to also analyze the
population risk, or “generalization” of a solution. Suppose the data as drawn from some unknown
population, modeled by a distribution % . In that case, we may also consider how well our solution F̂
does with respect to unseen data drawn from the same distribution.

Population loss: !(F ; %) def
= E
G∼%
(!(F ; x)) . (3)

Excess population risk at F̂ : !(F̂ ; %) −minF∈C !(F̂ ; %) (4)

We will return to population risk and generalization later in the course.

Further Examples In a support vector machine (SVM), the data are pairs (G8 , ~8) ∈ R3 × {−1, 1} and
we aim to minimize

!(F ; x) = 1
=

=∑
8=1
(1 − ~8 〈F, G8〉)+ + _‖F ‖22 , (5)

where (0)+ is shorthand for max(0, 0), and _ is a parameter that helps to select for “simple” (short)
solutions. The larger _ is, the more we penalize long solutions.

The individual loss here is called the hinge loss. The idea is that F de�nes a classi�er given by
sign(〈F, G8〉). The loss function here, called the hinge loss, applies no penalty at all when the sign of
〈F, G8〉 is correct (that is, equal to ~8) and the absolute value of 〈F, G8〉 is at least 1. Otherwise it applies a
penalty that changes gradually with 〈F, G8〉. This loss is intended to be a continuous, convex alternative
to the misclassi�cation losss, which would simply be 1 if ~8 〈F, G8〉 < 0 and 0 otherwise.

Neural nets provide another rich class of decomposable losses. The entries ofF represent weights
in the network, and one of several loss functions is used to penalize weights that lead to predictions that
do not �t the data well.

The examples we’ve given are for continuous loss functions (i.e. where ℓ is continuous inF), and
these will continue to be our focus. The general framework makes sense for discrete problems, but the
tools one employs and the �avor of the algorithms are di�erent.

Losses and Likelihoods Many loss functions used in practice are derived from some probabilistic
model of data generation. Speci�cally, we often think of the parametersF as de�ning a distribution on
the whole data (so ? (G |F) is a valid distribution on G for eachF) or on the label (so that ? (~ |G,F) is a
valid distribution on ~ for every �xedF and G .

Given a data set that an analyst conjectures has been generated according to a given model, a
natural approach is to �nd the parameterF that would have had the highest probability of generating
x = (G1, ..., G=), assuming the data were generated i.i.d.. We can write that probability as a product∏=
8=1 ? (G8 |F). Taking logarithms, we can turn the maximization problem into a sum, which makes

calculations easier:

F ∈ argmax
=∏
8=1

? (G8 |F) ⇐⇒ F ∈ argmin!(F ; x) =
=∑
8=1

ℓ (F ;G8) where ℓ (F ;G) = log 1
? (G |F) .

This value ofF is called the maximum likelihood estimator for the probability model. For example, if
we think that the data were drawn from a Gaussian distribution with variance 1 and unknown mean
`, the mean of the data set is the maximum likelihood estimator for `. The median corresponds to
maximum likelihood estimation for the Laplace distribution (with known variance and unknown mean).

2

2 Private ERM

Given a loss function ℓ specifying a decomposable loss ! and a feasible set C, we can ask for a di�erentially
private algorithm that solves the ERM problem. Without the privacy constraint, we could hope for a
solution with zero excess empirical risk. The randomness inherent to di�erential privacy makes that
impossible in general, but we could potentially bound the excess risk, either in expectation or with high
probability. For simplicity, we’ll focus on excess empirical risk.

In order to solve the problem di�erentially privately, we’ll need to somehow bound the in�uence
of any one data point on the loss function !. We’ll consider two assumptions on the individual loss
function ℓ : C ×U → R:

• Bounded loss: We say the loss ℓ is Δ-bounded if for every data value G ∈ U and for everyF ∈ C,

ℓ (F ;G) ∈ [0,Δ] .

This is essentially the same as asking that the overall loss function !(F ; ·) have global sensitivity
at most Δ for every �xedF . For example, in classi�cation problems, the misclassi�cation loss is
always bounded.

• Lipschitz loss: The individual loss ℓ is �-Lipschitz if for every data value G ∈ U and for every
F ∈ C, the gradient of ℓ with respect toF is bounded by � :

‖∇ℓ (F ;G)‖2 ≤ � .

In fact, the loss doesn’t need to be di�erentiable to be Lipschitz—the more general de�nition
is that for every G and every two vectors E,F , we have |ℓ (E ;G) − ℓ (F ;G) | ≤ � ‖E −F ‖. This is
implied by an upper bound on the gradient (why?) but allows for a wider range of functions. For
example, the loss function de�ning the median ℓ (F ;G) = |F − G | is 1-Lipschitz. The hinge loss (5)
is�-Lipschitz as along as we restrict the length of the data vectors G to be at most� , since by the
chain rule2

∇ℓ (F ;G) =
(
3

3C
(1 − C)+

��
C=〈F,G 〉

)
· G . (6)

The �rst term is -1 or 0, so the gradient’s norm is at most ‖G ‖2.
Exercise 2.1. Show that if the feasible set C is bounded, then Lipschitz loss functions are bounded.
Speci�cally, if ℓ is �-Lipschitz and the diameter of C is ', then ℓ is Δ-bounded for Δ = � · '.
Exercise 2.2. Under what conditions on C andU is the linear regression loss bounded? Lipshitz?
Exercise 2.3. Show that if the individual loss ℓ is �-Lipschitz, then so is the overall loss !.

2.1 A First Algorithm via the Exponential Mechanism

Suppose we have a bounded individual loss function ℓ : C × U → [0,Δ] together with an arbitrary
regularizer. One way to solve the ERM problem is via the exponential mechanism:
Algorithm 1: ExpMech-ERM(ℓ (·; ·), Y, x)
Input: Assume ℓ : C ×U → [0,Δ] and x ∈ U=

1 De�ne !(F ; x) = 1
=

∑=
8=1 ℓ (F ;G8) ;

2 Select ,̂ from the distribution on C with Pr(, = F) ∝ exp
(
− Y=2Δ!(F ; x)

)
;

3 return ,̂ ;

2Recall the chain rule from calculus: if 5 , 6 : R→ R are di�erentiable, then 3
3F

5 (6(F)) =
(
3
3C
5 (C)

��
C=6 (F)

)
· 3
3F
6(F).

3

This algorithm is well-de�ned when C and ℓ are not too pathological.3 We’ll assume going forward
that the algorithm makes sense.

Lemma 2.4. ExpMech-ERM (Algorithm 1) is (Y, 0)-DP.

The lemma follows directly from the fact that ℓ is Δ-bounded, so the overall loss function ! is
Δ
=

-sensitive. One can prove a number of di�erent types of utility theorems about this algorithm. We go
with a relatively straightforward one:

Theorem 2.5. Suppose C is the ℓ2-ball of radius ' in R3and ℓ is �-Lipschitz. Then for every data set x,
ExpMech-ERM with Δ = �' returns a parameter ,̂ such that

E
(
!(,̂ ; x)

)
≤ min
F∈C

!(F ; x) +$
(
3�' log(Y=

3
)

Y=

)
.

For constant � and ', this gives us small excess risk roughly when = = l (3/Y). That seems like a
good start—when we have more data than dimensions, we can get a good answer!

The main drawback of this algorithm is that it requires sampling from a pretty odd distribution.
Even when the set C is a ball, there is no reason to think that we can sample in polynomial time. For
example, the loss functions de�ned by deep neural nets would lead to distributions for which there are
no good algorithms that would be guaranteed to converge.

In fact, we can run this algorithm in polynomial time when the loss function we are optimizing is
convex. It turns out we can also tighten the analysis when ! is convex to get rid of the logarithmic factor.
Unfortunately, the sampling algorithms for general convex functions are not really practical. In the next
lecture, we’ll talk more about convex functions and see a family of algorithms based on gradient descent
that are both more e�cient and more accurate. But �rst let’s prove the theorem.

Proof. Fix a dataset x. We will use !(F) as shorthand for !(F ; x). LetF∗ be a true minimizer of !(F) in
C. Fix a small radius A , which we will set later to be about 3/(Y=). To bound the probability of getting
an output with high empirical risk, consider two sets of outputs:

�$$� = {F ∈ C : !(F) ≤ !(F∗) + A�}
��� = {F ∈ C : !(F) ≥ !(F∗) + A� + C}

Now P,̂ (���) is at most

P,̂ (���)
P,̂ (�$$�)

≤
Vol(���) exp(−Y=2'� (!(F

∗) + A� + C))
Vol(�$$�) exp(−Y=2'� (!(F∗) + A�))

=
Vol(���)

Vol(�$$�) 4
− Y=

2'� C .

The BAD set’s volume is at most that of the entire ball of radius '. But what about GOOD? Since ℓ is
�-Lipschitz, so is !. Thus �$$� contains all the points within distance A ofF∗ that lie within C. Even
ifF∗ is right up against the boundary of C, the ball of radius A aroundF∗ contains a ball of radius A/2
that is entirely within C (namely, the ball centered at '−A

'
F∗). So the ratio is Vol(���)

Vol(�$$�) is at most the
ratio of the volumes of the balls of radius ' and A/2. That ratio is

(2'
A

)3 . The rest of the proof is simply
putting these pieces together. We now know

P (���) ≤
(
2'
A

)3
· exp

(
− Y=

2'� C
)
= exp

(
3 ln

(
2'
A

)
− Y=

2'� C
)

3Say, when C is bounded and contains a non-empty ball and ' and ℓ are measurable.

4

For any V > 0, we can set C = 2'�
Y=

(
3 ln(2'

A
) + ln(1/V)

)
, to get that the probability of ��� is at most V .

Now the elements of ��� have excess risk A� + C . Setting A = 2' · 3
=Y

, and C as above, we get that
with probability at most V , the excess risk of ,̂ is at most

2'�
(
3

Y=
+ 3 ln(Y=/3) + ln(1/V)

Y=

)
.

Since this holds for every V > 0, we can use the integral formula for expectation4 to wrap up the
proof. �

The theorem can actually be proven for any convex set C of diameter ', not just the Euclidean ball.
We’ll discuss convex sets and functions in the next lecture.

Appendix

A Convex Sets and Functions

We recall some basic de�nitions and facts about convex functions.

De�nition A.1. A set C in R3 is convex if every two points G,~ ∈ C can “see each other”, that is, if the
line segment from G to ~ is entirely within C.

For example, cubes, pyramids, and spheres are convex, but “donuts” (tori) and chevrons are not.

De�nition A.2. A function 5 : C → R de�ned on a convex set C ⊆ R is convex if for every two points
G,~ ∈ C, we have

5

(G + ~
2

)
≤ 5 (G) + 5 (~)

2 .

For example, 5 (G) = G2 and 5 (G) = |G | and 5 (G) = ln(1/G) (where it is de�ned) are convex, but
5 (G) = (G − 1)3 is not (why?).

This de�nition is clean and simple, but not actually that easy to work with. An equivalent, and much
more useful, de�nition of convexity is the following:

Lemma A.3. Given a convex set C, a function 5 : C → R is convex if and only if: for every point G ∈ C,
we can �nd an a�ne function 6G such that 5 (G) = 6G (G) and 5 (~) ≥ 6G (~) for all ~ ∈ C.

When 5 is di�erentiable at G , the function 6G is just the �rst-order Taylor approximation

6G (~) = 5 (G) + 〈∇5 (G), ~ − G〉 .

However, the lemma makes sense even when 5 is not di�erentiable at G . In that case, we get many
possible functions 6G that are valid lower bounds for 5 . For instance, at G = 0, the absolute value function
5 (G) = |G | can be bounded below by 6G (~) = 2~ for any constant 2 between -1 and 1. In general, the set
of a�ne functions that are valid lower bounds for 5 at G de�ne the subgradient set of 5 at G

m5 (G) def
= {F : (∀~ ∈ C) 5 (G) + 〈F,~ − G〉 ≤ 5 (~)} . (7)

Exercise A.4. Use Lemma A.3 to prove Jensen’s inequality: if 5 is a convex function de�ned on a convex
set C, then for every random variable - taking values in C,

E (5 (-)) ≥ 5 (E (-)) .

4E (/) =
∫
I≥0 Pr(/ ≥ I)3I for nonnegative random variables / .

5

