
Privacy in Statistics and Machine Learning Spring 2021
Lecture 7: The Binary Tree Mechanism

Adam Smith and Jonathan Ullman

1 Query Release

When we set up the problem of reconstruction, we looked at examples where some organization, such
as the Census Bureau, holds a sensitive dataset and wants to release a large number of counts or
other simple statistics on that data. Often each one of these statistics is a low sensitivity function that
can be answered privately with very little noise—for example each count in Figure 1 is a 1-sensitive
function. However, the for large numbers of statistics, the sensitivity of the entire table quickly becomes
prohibitively large, proportional to the number of statistics.

Figure 1: An example of census tabulations from [GAM19].

The problem of releasing large numbers of counts, often somewhat inscrutably called linear query
release has been one of the central problems in di�erential privacy for many years [BCD+07], and has
driven many of the research questions and applications.

1.1 The Query Release Problem

We’ll start with a dataset x = (G1, . . . , G=) where each G8 ∈ U. We’re interested in asking linear queries,
which are statistics of the form

5 (x) =
=∑
8=1

i (G8) for i : U → {0, 1} (1)

As we’ve seen before, these queries capture statistics like “how many individuals in the dataset are
married adults age 64 and over?” We are interested in taking a large set of queries 51, . . . , 5: and releasing
a table of answers 01, . . . , 0: such that

:max
9=1

��0 9 − 59 (x)�� ≤ U= (2)

1

Note that the way we’ve constructed this set of queries, if we let � : U= → R: be the function that
takes x and outputs a vector of answers to every query, then the global sensitivity of � is never more
than : , so we can answer every query using Laplace noise with scale 1

Y
: . By our standard analysis of the

Laplace distribution, doing so will guarantee error U= = $ (1
Y
: log:). This is a baseline we can always

start with for any query release problem.
However, we can often do considerably better! One example where we’ve already seen this is

histograms, which is a set of : statistical queries that we can answer with error $ (1
Y
log:) using the

fact that the queries have a special structure that makes their global sensitivity just 2 instead of : . But
histograms are by no means the only example, and there are many clever algorithms for releasing large
sets of queries, even when their global sensitivity is not small. In this lecture, we’re going to focus on
one simple, but surprisingly rich example a query release problem, involving threshold queries.

2 Answering Interval Queries

So far we’ve seen “straightforward” approaches to achieving di�erential privacy based on computing
the global sensitivity Δ of some statistic 5 and adding noise proportional to Δ. In this lecture we’ll
take a look at an important example of a statistic—threshold queries—where we can come up with a
more “clever” approach that allows us to add considerably less noise than the global sensitivity. This
example is both important in its own right, and also a prelude to many other powerful and surprising
di�erentially private algorithms that we’ll see later in the course.

2.1 Interval Queries

Suppose we’re given a dataset x = (G1, . . . , G=) where each user’s data is a number G8 ∈ {1, . . . , �}.
We’ll use the notation [�] = {1, . . . , �} for convenience. For C ∈ [�], we can de�ne a threshold query
that asks for the number of users whose data is G8 ≤ C . The vector of interval queries is a function
Φ : [�]= → R(�2) that asks for the answer to 5B,C for every pair 1 ≤ B ≤ C ≤ � . Speci�cally,

5B,C (x) = # {8 : B ≤ G8 ≤ C} (3)
� (x) = (5B,C (x))1≤B≤C ≤� (4)

These queries are useful for many applications, and capture natural statistical quantities like the
cumulative distribution function and quantiles of the data. The cumulative distribution function is simply
the function Φ : [�] → R de�ned by

Φ(C) = # {8 : G8 ≤ C} (5)

and the @-quantile of the data is just the number C such that Φ(C) = @=, or Φ−1(@=).1 In particular, the
median is just the 1/2-quantile of the data, or C such that Φ(C) = =/2. Threshold queries are also called
range queries in the �eld of databases.

Baseline: The Laplace Mechanism. Since threshold queries are a set of
(
�
2
)

count statistics, the
global ℓ1-sensitivity of � is Δ ≤

(
�
2
)
= $ (�2). Thus we can answer these queries by sampling Laplace

random variables /B,C independently, with scale _ =
(
�
2
)
/Y, for every 1 ≤ B ≤ C ≤ � , and returning

0B,C = 5B,C (x) + /B,C for each query. Using our bounds on the Laplace distribution,

E

(
max

1≤B≤C ≤�

��0B,C − 5B,C (x)��) = $

(
�2 log�

Y

)
(6)

1Strictly speaking, since the data is discrete, Φ wont be continuous, and we need to rede�ne the quantiles a bit more
generally, but it’s not hard to come up with a reasonable way to do so.

2

and this bound on the sensitivity is tight up to a constant factor.

Exercise 2.1. Prove that the global ℓ1 sensitivity of � is Ω(�2).

A Simple Improvement. Just to see why answering every query with independent Laplace noise
is not the best possible algorithm, suppose we only answered the set of � queries 51,C for 1 ≤ C ≤ � .
Since there are now only � queries, we can answer each of these queries with expected maximum
error $ (1

Y
� log�), which is a big improvement over before. However, now that we have an answer

01,C ≈ 51,C (x) for every C , we can get an answer

0B,C = 01,C − 01,B−1 ≈ 5B,C (x) (7)

for every query 1 ≤ B ≤ C ≤ � . Taking the di�erence between two noisy answers can increase the error
by at most a factor of 2, so we still answer all interval queries with error $ (1

Y
� log�)! One important

thing to note about this approach is that, the overall result is a correlated distribution of the noise over
all

(
�
2
)

queries. In principle we could have just come up with this complex distribution over
(
�
2
)

from
scratch, it’s a lot easier to come up with this distribution by add independent noise to the subset of the
queries and then obtaining the correlated noise by recombining the answers.

This example may seem almost trivial, but it identi�es a crucial strategy that we’re going to see both
in the binary tree mechanism and later in the course:

Try to answer an easier set of queries and recover the answers to the queries you want!

In this example, the easy set of queries was just a subset of all the queries we were interested in. Although
we won’t see any example in this lecture, in general the easy set of queries can be completely di�erent
from the queries we actually want to answer.

2.2 The Binary Tree Mechanism

Next we’re going to see an even better way to reduce the noise for answering interval queries, that
reduces the error exponentially to $ (1

Y
log3 �). As before, the idea is to only answer a carefully chosen

subset of all the interval queries that simultaneously has two properties:

• The sensitivity of answering all the queries in the subset is small.

• We can reconstruct the missing queries by combining a small number of the queries in this subset.

For comparison, in the simple improvement above, the sensitivity was � and the number of queries we
had to combine to reconstruct was 2. Now we’re going to see an even better subset where the sensitivity
drops all the way down to $ (log�) and the number of queries to reconstruct goes up just a bit but is
still $ (log�). As we’ll see, this balancing act gives a much better overall guarantee on the error.

The resulting mechanism is often called the binary tree mechanism, and it was discovered a few
di�erent times in di�erent contexts [DNPR10, CSS11].

For convenience, let’s assume � is a power of 2 so that log2 � is an integer. If this isn’t the ase we
can just increase � until it’s a power of 2, which can increase the size of the domain by a factor of at
most 2, and wont change the �nal error bound signi�cantly. The interval queries we’ll include in our
subset are going to be all the intervals of length 1, 51,1, 52,2, . . . , 5�,� as well as all consecutive intervals
of length 2, 51,2, 53,4, . . . , 5�−1,� as well as all consecutive intervals of length 4, 51,4, 55,8, . . . , 5�−3,� and so
on for lengths 1, 2, 4, 8, . . . , � until we have just a single interval 51,� . It’s much easier to understand the
mechanism if we visualize the set of intervals we’re choosing as a binary tree, where the integers 1, . . . , �

3

Figure 2: A diagram showing the queries in T for the domain � = 8. The highlighted squares represent
the interval {1, . . . , 7} and the highlighted circles show the decomposition of this interval into a union
of three intervals in T .

are at the leaves, and every node represents an interval consisting of the union of its two children.2 To
help with the analysis, we’ll use T to denote the set of intervals contained in the tree. Formally,

T =
{
(D, E) : D = 9 · 2ℓ−1 + and E = (9 + 1) · 2ℓ−1 for 1 ≤ ℓ ≤ log2 � and 1 ≤ 9 ≤ �/2ℓ−1

}
(8)

although it’s much easier to look at the picture in Figure 2.
Note that the tree has log2 � levels and each level has �/2ℓ nodes, so

|T | =
log2 �∑
ℓ=1

�

2ℓ−1 = 2� − 1

Thus, just looking at the size of T doesn’t tell us that these queries have low sensitivity. However, the
key property of the binary tree is that if we add a user with data G8 = C , then it only changes the value
of the intervals in the tree that are ancestors of the leaf C , and there are exactly log2 � of these! We can
formalize this idea with the following claim.

Claim 2.2. The global sensitivity of �BT (x) = (5D,E (x)) (D,E) ∈T is at most 2 log2 � .

Proof. If we change one datapoint from G8 to G ′8 then we reduce the answer to all queries that are
ancestors of G8 in the binary tree and increase the answer to all queries that are ancestors of G ′8 . Since
every leaf in the tree has 3 ancestors, the total number of queries that can change is at most 2 log2 � .
Thus the change to the whole vector of queries in ℓ1 is at most 2 log2 � . �

Claim 2.2 means that we can release every query Y-DP by adding Laplace noise with scale _ =
2 log2 �

Y

to each coordinate of �BT . Thereby we obtain

0D,E = 5D,E (x) + /D,E /D,E ∼ Lap
(
2
Y
log2 �

)
(9)

2In practice we actually get better bounds using a shallower tree with a larger branching factor, but it wont make any
di�erence for the $ (·) analysis.

4

for every (D, E) ∈ T , where the random variables /D,E are independent. By our standard analysis of the
Laplace distribution we also have

E

(
max
(D,E) ∈T

|/D,E |
)
=
2 log2(�) (ln(2� − 1) + 1)

Y
= $

(
1
Y
log2 �

)
(10)

Recovering the Answers. So far we have managed to answer all of the interval queries contained
in T with expected maximum error $ (log2(�)/Y). For example, if we want to answer the threshold
query 55,8, then we can just look up

55,8(x) ≈ 05,8 (11)
and get an accurate answer.

But what if we want to obtain, say, 51,7(x), which is the number of individuals whose data G8 is at
most 7? This isn’t one of the intervals in the tree, but we can reconstruct it by combining three di�erent
intervals. The key idea is to write the interval {1, . . . , 7} as a union of intervals that are contained in the
binary tree, speci�cally

{1, 2, 3, 4, 5, 6, 7} = {1, 2, 3, 4} ∪ {5, 6} ∪ {7} (12)
Thus, we can reconstruct an approximate answer to 57(x) from the output of the binary tree as follows

51,7(x) = 51,4(x) + 55,6(x) + 57,7(x) ≈ 01,4 + 05,6 + 07,7 (13)

Note that since we are summing up three di�erent noisy answers, we might get three times as much
noise, but as long as we don’t have to sum too many noisy, we won’t increase the noise by too much.
Let’s see how we can do this for any threshold query 51,C . Note that we also want answers to queries 5B,C ,
but as we’ve seen we can obtain those as the di�erence 5B,C = 51,C − 51,B−1.

The key claim is that for any threshold query 51,C , we can write it as the sum of at most log2 �
intervals in the set T .

Claim 2.3. For every 1 ≤ C ≤ � , there exists S ⊆ T of size |S| ≤ log2 � such that

51,C (x) =
∑
(D,E) ∈S

5D,E (x) .

Exercise 2.4. Prove Claim 2.3

By the claim, for every interval query 51,C , for 1 ≤ C ≤ � , we can compute

51,C (x) =
∑
(D,E) ∈S

5D,E (x) ≈
∑
(D,E) ∈S

0D,E (14)

Now let’s see why the error will be small for every query. Let 11,C
∑
(D,E) ∈S 0D,E be the noisy answer we

recover for 5C (x). Then for every threshold 1 ≤ C ≤ � we have

��11,C − 51,C (x)�� =
������ ∑
(D,E) ∈S

0D,E − 51,C (x)

������ =
������ ∑
(D,E) ∈S

/D,E

������
≤

∑
(D,E) ∈S

|/D,E |

≤ |S| · max
(D,E) ∈T

|/D,E |

≤ log2 � · max
(D,E) ∈T

|/D,E |

5

Therefore we also have

E

(
max
1≤C ≤�

��11,C − 51.C (x)��) ≤ E (
log2 � · max

(D,E) ∈T
|/D,E |

)
= $

(
1
Y
log3 �

)
(15)

where we have used the fact that E
(
max(D,E) ∈T |/B,C |

)
= $ (1

Y
log2 �). Remember that we can get answers

1B,C for 1 ≤ B ≤ C ≤ � by taking 1B,C = 11,C − 11,B−1.
We can summarize with the following theorem

Theorem2.5. There is an Y-DPmechanism that answers all
(
�
2
)
interval queries over the universe {1, . . . , �}

such that

E

(
max

1≤B≤C ≤�

��5B,C (x) − 1B,C ��) = $

(
1
Y
log3 �

)
A few notes about this theorem are in order:

• Since any interval query 6B,C (x) can be written as 5C (x) − 5B (x), we can answer all
(
�
2
)

interval
queries with (at most) the error as we get for all the threshold queries.

• The analysis we did was a bit loose, in particular in the step where we wrote |∑/D,E | ≤
∑ |/D,E |.

That is, since the signs of each /D,E are random and independent, the sum should be more like
(∑/ 2

D,E)1/2 rather than
∑ |/D,E |, and the former will typically be much smaller. The overall e�ect

of a more careful analysis would be to get error more like $ (1
Y
log2.5 �).

• Our reconstruction procedure is actually not the only way to reconstruct the answers! In fact, the
binary tree contains multiple ways of estimating a threshold 5C (x). For example,

56 = 61,4 + 65,6 = 61,8 − 67,8.

By combining the di�erent estimates we can improve the error signi�cantly in practice [Hon15].

• The true answers to threshold queries 51,C are monotonic, meaning C ≤ C ′ implies 5C (x) ≤ 5C ′ (x).
However, because of noise, the reconstruction procedure might give answers that are not monotone.
However, since di�erential privacy is closed under post-processing, we can take the answers
01, . . . , 0� and replace them with a new set of answers 0̃1, . . . , 0̃� that are monotone and are as
close as possible to 01, . . . , 0� . Not only will this result in a set of plausibly correct answers, it will
actually reduce the overall error signi�cantly! This phenomenon arises in many settings, and was
(perhaps?) �rst explicitly studied in [HRMS10].

The Domain Size. One other thing that deserves mention is the role of the domain size � . Often �
is not actually given to us, but rather something we choose. For example, if the data consists of arbitrary
bounded real numbers G8 ∈ [0, �] then we might choose to discretize the data by rounding it to the
nearest integer value in {0, 1, . . . , �}, so that we can apply the binary tree mechanism with � = � + 1.
The rounding will also introduce some error, and this error may or may not be signi�cant depending on
the nature of the data itself. For example, if most of G8 lie between 10 and 11, then rounding will lose
most of the information about the dataset. Thus, perhaps we will choose to discretize to multiples of
some small parameter W , in which case we’ll have� = �/W +1, which will reduce the error from rounding
but also increase the error from the binary tree mechanism. Finding the optimal way to discretize data
to apply the binary tree mechanism is tricky, and cannot be done without some prior knowledge of
what the data looks like.

6

A natural question is whether we really have to choose �? Perhaps we can just use a domain of
all real numbers, or take � to be so large that it captures every number our computer can represent?
The answer turns out to be quite complex. There are many more algorithms for threshold queries with
improved error, notably [DNRR15, BNS13]. These best of these gives a strange looking error bound
of about 1

Y
(log∗ �)3/2, although these algorithms are not currently practical. Given that the iterated

logarithm function3 log∗ � grows with � so slowly, you would be tempted to think that surely there
is a solution with error independent of � , or even one that works for data over the in�nite domain of
all real numbers. However, you’re be wrong [BNSV15]! Actually any algorithm for answering interval
queries requires error Ω(log∗ �).

One �nal thought is that this is probably the most “clever” algorithm that we’ve seen so far, and
it’s worth emphasizing that there are many interesting di�erentially private algorithms, even for very
simple looking problems, and surely many more yet to be discovered!

Additional Reading and Watching

•

References

[BCD+07] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry, and Kunal
Talwar. Privacy, accuracy, and consistency too: a holistic solution to contingency table
release. In Proceedings of the 26th Annual ACM Symposium on Principles of Database Systems,
PODS ’07, 2007. ACM.

[BLR08] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive
database privacy. In Annual ACM Symposium on the Theory of Computing, STOC ’08, 2008.

[BNS13] Amos Beimel, Kobbi Nissim, and Uri Stemmer. Private learning and sanitization: Pure
vs. approximate di�erential privacy. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, RANDOM-APPROX ’13. Springer, 2013.

[BNSV15] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil Vadhan. Di�erentially private release and
learning of threshold functions. In IEEE 56th Annual Symposium on Foundations of Computer
Science (FOCS), 2015.

[CSS11] T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Transactions on Information and System Security (TISSEC), 14(3):26, 2011.

[DNPR10] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Di�erential privacy
under continual observation. In Symposium on Theory of Computing (STOC). ACM, 2010.

[DNRR15] Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N Rothblum. Pure di�erential privacy
for rectangle queries via private partitions. In International Conference on the Theory and
Application of Cryptology and Information Security, ASIACRYPT ’15. Springer, 2015.

3The function log∗ � is the Iterated logarithm function, and is de�ned by the recurrence log∗ (2�) = log∗ (�) + 1. In more
operational terms, it’s the number of times you hit the log button on your calculator, starting from) , before the answer is
smaller than 1. It technically goes to∞ as � →∞, but for any number you can dream up, it’s at most 6.

7

[GAM19] Simson Gar�nkel, John M Abowd, and Christian Martindale. Understanding database
reconstruction attacks on public data. Communications of the ACM, 62(3):46–53, 2019.

[Hon15] James Honaker. E�cient use of di�erentially private binary trees. 2015. https://hona.
kr/papers/files/privatetrees.pdf.

[HRMS10] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. Boosting the accuracy of
di�erentially private histograms through consistency. Proceedings of the VLDB Endowment,
3(1), 2010. https://arxiv.org/abs/0904.0942.

8

https://hona.kr/papers/files/privatetrees.pdf
https://hona.kr/papers/files/privatetrees.pdf
https://arxiv.org/abs/0904.0942

