
Privacy in Statistics and Machine Learning Spring 2021
Lecture 5: Di�erential Privacy II

Adam Smith and Jonathan Ullman

1 Properties of DP: Composition and Postprocessing

Notions of security should not be too fragile. If we argue that something is secure in isolation it should
still be the case that it is secure in the real world where more than one algorithm or protocol is being run.
One type of robustness we need is security under composition. Let’s illustrate this with two scenarios:

Scenario 1 Suppose two hopsitals hold overlapping data sets x(1) and x(2) , and each runs a di�erentially
private algorithm on its data set. Suppose the hospitals run separate algorithms �1 and �2, each
of which is di�erentially private. For the individuals whose records are in both data sets, what
sort of prvacy guarantee can we make if an outside attacker see the output of both algorithms?

Scenario 2 Suppose I have one data set x, and I run an Y1 di�erentially private algorithm �1 to get
output 01. For example, maybe �1 estimates two counting queries: the number of diabetics in
the data set, and the number of people with high blood pressure. Based on the �rst answer 01, I
choose a second algorithm �

(01)
2 that is Y2-DP. For example, maybe if both counts in 01 are at least

100, I will ask �2 to estimate the number of people who have diabetes and high-blood pressure,
but if one of the counts is small, I will instead ask about the number of people with heart disease.
I run � (01)2 to get 02 and output both values 01, 02.

𝐴!

𝒙

𝐴#

𝒂𝟏 𝒂𝟐

𝐴

Figure 1: The composition of
two algorithms (solid boxes),
viewed as a single larger algo-
rithm � (dashed box).

Both of these senarios are cases of composition. To simplify things
a bit, think of the two data sets in ‘Scenario 1’ as one big dataset x
containing the information from both hospitals; the set of people with
records in x would be the union of the sets of people in with records
in x1 and x2. So what the adversary sees in Scenario 1 is the outcome
of one big algorithm �(x) = (�1(x), �2(x)). Similarly, in ‘Scenario 2’
we can view the �nal output as the outcome of one big algorithm �

which includes the decision of which statistics to ask for as part of the
input to �2. Figure 1 captures both settings, showing the combined
algorithm as a dashed box.

Composition thus covers two apparently di�erent phenomena:
�rst, my data is used by many organizations, and I should consider
what is leaked by the combination of releases that concern me; second,
we would like to design algorithms and work�ows modularly, with
outputs of early stages feeding in to decisions made later on.

Di�erential privacy o�ers the following convenient guarantee: if�1 and�2 are respectively Y1 and Y2
di�erentially private, then� is Y ′-DP with Y ′ ≤ Y1 +Y2. To set up the general formalism, let�1 : X= → Y1
be Y1-DP, and let �2 : Y1 ×X= → Y2 be Y2-DP for all values of its �rst input (that is �2(01, ·) is Y2-DP for
every value of 01). This means that �2 runs a DP algorithm but exactly which algorithm that is depends
on 01.

Lemma 1.1. Let � : X= → 2.1 × Y2 be the randomized algorithm that outputs �(x) = (01, 02) where
01 = �1(x) and 02 = �2(01, x). Then � is (Y1 + Y2)-DP.

1

Proof. We prove the discrete case here, for simplicity. Let x, x′ be neighboring data sets in X= , and let
0 = (01, 02) be an outcome in Y1 × Y2 .

P(�(x) = (01, 02)) = P(�1(x) = 01) · P(�2(x, 01) = 02) (1)

Since �1 is Y1-DP, and �2(01, ·) is Y2-DP for every choice of 01, we can bound the probability above.

P(�(x) = (01, 02)) ≤ 4Y1P(�1(x′) = 01) · 4Y2P(�2(x′, 01) = 02)
= 4Y1+Y2 · P(�(x′) = (01, 02)) �

The proof applies to arbitrary sets by writing a set � as a union of singletons {(01, 02)}, as in the proof
of randomized response (and Exercise 3.3) from Lecture 4.

By induction, we get a general-purpose way to analyze complex algorithms with many stages. We’ll
write it here, and leave the proof as an exercise.

Lemma 1.2 (Basic Composition). Let �1, �2, ..., �: be a sequence of randomized algorithms, where �1 :
X= → Y1 and �8 : Y1 × · · · Y8−1 × X= → Y8 for 8 = 2, 3, ..., : (so �8 takes as input elements that
could have been output by �1, ..., �8−1, as well as a data set in X=). Suppose that for each 8 ∈ [:],
for every 01 ∈ Y1, 02 ∈ Y2, ..., 08−1 ∈ Y8−1, we have that �8 (01, ..., 08−1, ·) is Y8-DP. Then the algorithm
� : X= → Y1 × · · · × Y: that runs the algorithms �8 in sequence is Y-DP for Y =

∑:
8=1 Y8 .

Exercise 1.3. Prove Lemma 1.2.

The Basic Composition lemma allows us to design complex algorithms by putting together smaller
pieces. We can view the overall privacy parameter Y as a budget to be divided among these pieces. We
will thus often refer to Y as the “privacy budget”: each algorithm we run leaks some information, and
consumes some of our budget. Di�erential privacy allows us to view information leakage as a resource
to be managed.

Exercise 1.4. Sometimes it is much better to analyze an algorithm as a whole than to use the composition
lemma. Consider the histogram example from Lecture 4, where X is written as a partition of disjoint
sets �1, �2, ..., �3 , and we want to count how many records lie in each set. Viewed as one 3-dimensional
function, the histogram has global sensitivity 2. We could also view it as 3 separate functions =1, =2, ..., =3 ,
each with globabl sensitivity 1. How much noise would the Laplace mechanism add to these counts if
we ran it spearately for each of the = 9 with privacy budget divided equally among them? How does that
compare to running the Laplace mechanism once on the joint function?

1.1 Postprocessing

Now one question that might come up is whether it’s ok in Figure 1 to release only part of �’s output.
For instance, what if we release only 02? Or perhas some function of both 01 and 02? It turns out that
the privacy guarantee never gets worse when we release a function of the output.

Lemma 1.5 (Closure under postprocessing). Let� : X= → Y and � : Y → Z be randomized algorithms,
where X,Y,Z are arbitrary sets. If � is Y-di�erentially private, then so is the composed algorithm �(�(·)).

Proof. Let’s �rst prove the lemma for the case where � is deterministic. In that case, the event �(�(x)) = 1
is the same as the event �(x) ∈ �−1(1) where �−1(1) is the preimage of 1 under �. So we can just apply
the �’s DP guarantee to �−1(1):

P(�(�(x)) = 1) = P
(
�(x) ∈ �−1(1)

)
≤ 4YP

(
�(x′) ∈ �−1(1)

)
= 4YP(�(�(x)) = 1) . (2)

2

To handle the case where � is randomized, we can write the �(0) as the application of a deterministic
function 5 applied to the pair (0, ') where ' is a random variable independent of 0 that represents �’s
random choices.

Thus, �(�(·)) is the application of a deterministic function to �′(x) = (�(x), '). The algorithm �′

is Y-DP (since ' is independent of �’s coins). Thus �(�(·)) is also Y-DP. �

1.2 Group privacy

Finally, we might also ask what sort of guarantee DP provides for a group of individuals in the data (a
family, say).

Lemma 1.6. Let x and x′ be data sets in X= that di�er in : positions, for an integer 1 ≤ : ≤ =. If � is
Y-DP, then for all events �, we have

P(�(x) ∈ �) ≤ 4:YP(�(x′) ∈ �) . (3)

Proof. Let x(0) , x(1) , ..., x(:) be a sequence of : + 1 data sets in X= that move smoothly from x to x′: that
is, suppose x(0) = x, x(:) = x′ and every adjacent pair x(8−1) , x(8) di�er in just one entry. Consider an
subset � of putputs. Moving from x(8−1) to x(8) increases the probability of � by at most 4Y . Since there
are : steps in the sequence, the probability of � can increase by at most 4Y: . �

Group privacy allows us to point out an important point about DP: the parameter Y can be small, but
it can never be very small while allowing useful information to be released. Speci�cally, if Y is much less
than 1/= then for every two datasets x and x̃, regardless of the number of entries in which they di�er,
the distributions of �(x) and �(x̃) are about the same. That means the algorithms more or less ignores
its input, and cannot release information that would allow one to tell apart 0= from 1= , or any other
pairs of data sets. We encapsulate this as the following lesson:

Useful di�erentially private algorithms require Y � 1/=.

In particular, it’s hard for di�erentially private algorithms to provide useful outputs when the input data
sets are small, unless we make Y quite large, perhaps even much larger than 1. “Aggregate” information
requires a big enough crowd over which to aggregate.

2 Example: :-means Clustering via Lloyd’s Algorithm

Let’s use some of the tools we now have—the Laplace mechanism and basic composition—to design a
more complex algorithm.

Lloyd’s algorithm for clustering data in Euclidean space, sometimes called the “:-means” aglorithm,
takes a data set of points G1, ..., G= in R3 and attempts to �nd : points—not necessarily in the data—that
minimize :-means objective, which is the sum over 8 = 1, ..., = of the squared distance from G8 to the
nearest center. When : = 1 , the best center is always the mean of the data set. However, when : ≥ 2,
solving the problem exactly is di�cult. There are algorithms with well-understood approximation
guarantees for the :-means problem, but in practice people often use Lloyd’s algorithm, described in
Algorithm 1, since it is simple to implement and runs quickly.

The idea of Lloyd’s algorithm is simple: at each stage C of the algorithm we have a candidate set of
centers 21, ..., 2: . We divide the data points into : groups, assigning each point G8 to group 9 if 2 9 is the
closest to G8 among the clusters. We now compute new centers by taking the average of each group.

3

Algorithm 1: Lloyd’s algorithm with random initialization
Input: Data set x ∈ X= where X =

{
G ∈ R3 : ‖G ‖1 = 1

}
, parameter :

1 Initialize 2 (0)1 , 2
(0)
2 , ..., 2

(:)
:

randomly in X ;
2 for C = 1 to) do
3 for 9 = 1 to : do
4 (9 =

{
8 : 2 (C−1)

9
is the closest current center to G8

}
;

5 2
(C)
9

=
1
|(9 |

∑
8∈(9

G8 ;

6 return 2 ())1 , 2
())
2 , ..., 2

())
:

;

This process is repeated) times for a parameter) that we will assume is given. The �nal output is the
set of centers from the last step.

We won’t try here to analyze Lloyd’s algorithm (or consider any of the many known variations
that improve its performance). Instead, we’ll ask: Can we give a di�erentially private algorithm that
produces similar output?

At �rst glance, the Laplace mechanism seems hard to apply. The �nal clusters produced by the
algorithm come from a complex sequence of interactions between data points. Viewed as one big
deterministic function, Lloyd’s algorithm surely has high global sensitivity!

Instead, we’ll get a di�erentially private version by applying the Laplace mechanism to get noisy
versions of the each of the algorithm’s intermediate steps. We can divide our privacy budget Y into)
parts, and assign Y/) to each intermediate step. We’ll analyze privacy as if the cluster centers from each
intermediate step were released. We can then apply Basic Composition to get a privacy guarantee for
the whole algorithm. The privacy guarantee applies even if we only release the �nal cluster centers, by
postprocessing. In practice, it works even better to output the average of the clusters in the last few
iterations of the algorithm.

The resulting algorithm is in Algorithm 2, with the di�erences from the original marked in red. Let’s
look at one iteration of the algorithm through the main for loop. Suppose we have already released
centers 2 (C−1)1 , ..., 2

(C−1)
:

from the previous step. Then we can divide the universeX into: regions �1, ..., �: ,
where � 9 consists of points closest to center 2 (C−1)

9
. (Such regions are called the “Voronoi cells” of the

centers.) To compute the next set of centers, we can approximate two quantities for each � 9 :
• = 9 (integer): the number of data records in � 9 , and
• 0 9 (vector in R3): the sum of the data records in � 9 (as vectors)

In the original algorithm, the new 9-th cluster center 2 (C)
9

would be the average 0 9/= 9 . Instead, we’ll
use the Laplace mechanism to approximate each of these. To keep things simple, we’ll assume that
the data points have bounded ℓ1 norm to begin with. That is, the universe of allowed records is
X =

{
G ∈ R3 : ‖G ‖1 ≤ 1

}
.

Proposition 2.1. Algorithm 2 is Y-DP.

Proof. By Basic Composition, it is enough to argue that each stage C of the algorithm is Y
)

-DP for every
value of the previous centers centers 2 (C−1)1 , ..., 2

(C−1)
:

. Fix C ∈ [)]. Fix the previous centers and the
associated regions �1, ..., �: in X. FInally, �x two neighboring data sets x, x′.

The counts (=1, ..., =:) form a histogram. Their global sensitivity is thus 2. Releasing =̂1, ..., =̂: by
adding noise Lap

(4)
Y

)
to each histogram entry thus consumes at most Y

2) of our privacy budget.

4

Algorithm 2: A di�erentially private version of Lloyd’s algorithm
Input: Data set x ∈ X= where X =

{
G ∈ R3 : ‖G ‖1 = 1

}
, parameter : and

privacy parameter Y > 0
1 Y ′ = Y

2) (since we will compose 2) executions of the Laplace mechanism);
2 Initialize 2 (0)1 , 2

(0)
2 , ..., 2

(:)
:

randomly in X ;
3 for C = 1 to) do
4 for 9 = 1 to : do
5 (9 =

{
8 : 2 (C−1)

9
is the closest current center to G8

}
;

6 = 9 = |(9 | (this has global sensitivity 2 across all 9);
7 0 9 =

∑
8∈(9 G8 (this has global sensitivity 2 across all 9);

8 Release =̂ 9 = = 9 + . where . ∼ Lap
(2
Y′
)

;
9 Release 0̂ 9 = 0 9 + (/1, ..., /3) where /ℓ ∼ Lap

(2
Y′
)

i.i.d.;

10 2
(C)
9

=

0̂ 9

=̂ 9
if =̂ 9 ≥ 1

uniform in X if =̂ 9 < 1
;

11 return 2 ())1 , 2
())
2 , ..., 2

())
:

(NB: One can also average over the last few iterations to reduce
variance);

Similarly, we can view the sums 01, ..., 0: as one long vector of length :3 . If we change one record in
the data set, only two of the sums 0 9 can change, since the record either stays in the same bin or moves
from one bin to another. These two sums gain or lose one term each, of ℓ1 norm at most 1. The change
in the long vector is thus at most 2. Again, the algorithm adds noise Lap

(4)
Y

)
to each entry, consuming

another Y
2) of our privacy budget. The computation of the next cluster center is just postprocessing of

the =̂ 9 ’s and 0̂ 9 ’s, so it consumes no further budget.
The total expenditure for the C step is thus Y

)
. By Basic Composition, the algorithm as a whole is

Y-DP. �

5

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
t = 0

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
t = 1

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
t = 2

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
t = 3

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
t = 4

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
t = 5

Figure 2: Results of executing Algorithm 2, a DP variant of LLoyd’s algorithm, on a data set of = = 2, 000
points. The blue crosses represent the cluster centers from each stage of the original algorithm while the
red ones represent the cluster centers from each stage of the DP variant. The red crosses are basically
stable after the �rst two iterations; the lbue ones converge to essentially the same locations, but take
longer to stabilize.

6

3 Interpreting DP: Smoking, Cancer, and Correlations

What does it mean to decide if a concept like di�erential privacy is a good de�nition of “privacy”? There
is no single answer, since it involves a connection between an unambiguous mathematical concept
and a nebulous social one. “Privacy” covers lots of di�erent concepts, many of which are more about
control than con�dentiality, and all of which are context-dependent.1 Nevertheless, we can try to wrap
our heads around the guarantee that a technical concept provides—perhaps we can chip o� a piece of
“privacy” which is accurately pinned down by DP.

How can we start? A good exercise is to write down an natural-language sentence that captures the
type of guarantee we would like. A strong requirement, reminiscent of what is possible for encryption
would be this:

A �rst attempt: No matter what they know ahead of time, the attacker’s beliefs about
Alice are the same after they see the output as they were before.

Unfortunately, such a strong guarantee is impossible to achieve if we actually want to release
useful information. To see why, consider the example of a clinical study that explores the relationship
between smoking and lung disease. A health insurance company with no a priori understanding of
that relationship might, after seeing the results of the study, dramatically alter its estimates of di�erent
people’s likelihood of disease. In turn, this would likely cause the company to raise premiums for
smokers and lower them for nonsmokers. The conclusions drawn by the company about the riskiness
of any one individual (say Alice) are strongly a�ected by the results of the study. Their beliefs about
Alice have de�nitely changed.

However, the change can hardly be called a breach of Alice’s privacy. It happens because the study
reveals a feature of human biology—exactly what we want clinical studies to do!

So what can we hope to achieve? One important observation about the smoking and lung disease
example is that the information about Alice would be learned by the insurance company regardless of
whether Alice participated in the study. In other words, the conclusions the insurance company draws
about Alice come from the totality of the data set, and don’t depend strongly on her data. One way to
understand di�erential privacy is that this is the only kind of inference about individuals that it allows.

The DP principle: No matter what they know ahead of time, an attacker seeing the output
of a di�erentially private algorithm would draw (almost) the same conclusions about Alice
whether or not her data were used.

It is instructive to formalize this intuitive statement. What do we mean by “what the attacker knows”
and “what they learn”? We’ll adopt what statisticians call a Bayesian perspective, and encode knowledge
via probability distributions. Speci�cally, let’s think of the data set as a random variable X distributed
over X= . For clarity, we’ll use capital letters like X to refer to random variables, and lower case symbols
like x to refer to speci�c realizations.

We can the adversary’s background knowledge via a prior distribution ? (x) = P(X = x). We should
think of this as how likely a given data set is to occur given everything the attacker knows ahead of
time. 2 Because we don’t know what other information the attacker has, we will want our analysis to
work for every prior distribution ? .

1A number of writers have dissected the concept, trying to provide their own taxonomy of privacy’s many facets. Bran-
deis [?], Solove [?], and Nissenbaum [?] provide good places to start.

2Our use of probability to model knowledge this way corresponds to the subjective interpretation of probability (see, e.g.,
[Háj19]). It’s pretty di�erent from the way we use probability in the de�nition of a randomized algorithm, or in the de�nition

7

Given the output 0 = �(X). We can model “what the adversary learns” by the posterior distribution
of the data conditioned on the algorithm’s output. That is,

? (x | 0) def
= P(X = x | �(X) = 0) = P(�(x) = 0) · ? (x)∑

x̃∈X= P(�(x̃) = 0) · ? (x̃) . (4)

But how should we model “what the attacker would have learned had person 8’s data been removed”?
Given a data set x ∈ X= , let x−8 denote the data set in which person 8’s entry has been replaced by a
default value. Consider a hypothetical world in which the data set x−8 is used instead of the real data
set x. Given an output 0, we can now consider the conditional distribution ?0,−8 (· | 0) that the attacker
would have constructed in the hypothetical world, namely:

?0,−8 (x | 0)
def
= P(X = x | �(X−8) = 0) =

P(�(x−8) = 0) · ? (x)∑
x̃∈X= P(�(x̃−8) = 0) · ? (x̃)

. (5)

We can think of ?0,−8 (· | 0) as encoding what the attacker would have learned about person 8 had person
8’s data never been used.

To formalize our claim about di�erential privacy, we’ll use the following shorthand. For two
distributions % and & on the same set Y (technically, over the same f-algebra of events), we’ll write

% ≈Y & ⇔ (∀ events � ⊆ Y : % (�) ≤ 4Y& (�) and & (�) ≤ 4Y% (�)) . (6)

Given two random variables � and � distributed over the same set, we’ll sometimes abuse notation and
write � ≈Y � to mean that the relation in (6) is satis�ed by their distributions. With this notation, an
algorithm� is Y-DP if and only if, for every pair of neighboring data sets x and x′, we have�(x) ≈Y �(x′).

Theorem 3.1. Let � : X= → Y be Y-di�erentially private. For every distribution on X (possibly with
dependencies among the entries), for every output 0 ∈ Y, for every index 8 , we have

?0,−8 (· | 0) ≈2Y ? (· | 0) . (7)

Exercise 3.2. Prove Theorem 3.1. Hint: Fix an output 0 ∈ Y. Given a data set x ∈ X= , how can you
write the ratio ?0,−8 (x |0)

? (x |0) in terms of the ratios of the form P(�(x−8)=0)
P(�(x)=0) ?

Something here might seem weird: how can the attacker learn about 8’s data from 0 if G8 was not
used to compute 0? The answer is in the dependencies among the data records—the attacker can learn
about x−8 , which itself reveals information about G8 .

Returning to the smoking and lung disease example: Suppose the records in X are drawn i.i.d. from
one of several possible distributions. For simplicity, imagine there are two possible distributions, one
where the features are independent, and one where they are strongly correlated, so that the prior on
X is a mixture of the two. Seeing the clinical study’s results basically causes the insurance company’s
posterior to collapse to the i.i.d. distribution in which the features are correlated. Whether the study
used Alice’s data or not, the insurance company’s posterior distribution on Alice’s record would have
the features correlated.

What have we learned? We can model knowledge via probabilities, and learning via the change from
prior to posterior distributions. When we do that, we can make our intuition precise—-that di�erentially
private mechanisms reveal only information that could be learned without any particular person’s data.

of di�erential privacy. In those contexts, the probabilities re�ect a process we control, and it’s reasonable to think of them
as known exactly. In contrast, we cannot expect to know an attacker’s prior. Here, we posit only that it exists. Even this
postulate is delicate, especially since real attackers are computationally bounded. We ignore computational restrictions here
for simplicity.

8

We’ve also found a useful natural language formulation of our goal when thinking about con�den-
tiality of individuals’ data when releasing aggregate statistics. That type of formulation is particularly
useful since it can guide our intuition for the technical concepts. It can also help us articulate goals in
legal and policy discussions.

3.1 A not-so-great variation on di�erential privacy

The formulation of Theorem 3.1 also helps us distinguish among similar de�nitions of privacy.
Suppose we were to require that probabilities di�er by an additve error term rather than a multi-

plicative one. We might say that a randomized algorithm satis�es “X-additive secrecy” if for all pairs of
neighboring data sets x, x′ and for all sets of events �, we have

P(�(x) ∈ �) ≤ P(�(x′) ∈ �) + X .

How di�erent is this from di�erential privacy? It certainly has things in common: for example, it
is closed under composition and postprocessing, and satis�es a similar version of group privacy. In
particular, we must have X > 1/= to get useful information out of such an algorithm. However, it does
not satisfy a reasonable analogue to Theorem 3.1, and it does allow some algorithms that are pretty
obviously disclosive.

Exercise 3.3 (Name and Shame Mechanism). Consider the following mechanism #(X . On input
x = (G1, ..., G=), for each 8 from 1 to =, it generates

.8 =

{
(8, G8) w. prob. X ,
⊥ w. prob. 1 − X .

(8)

Here ⊥ is just a special symbol meaning “no information”.
(i) Show that #(X satis�es “X-additive secrecy”. (ii) Show that for X � 1/=, the mechanism publishes

some individuals’ data in the clear with high probability, and that for such outputs, Eq. (7) in Theorem 3.1
does not hold.

Summary

Key Points

• Di�erentially private algorithms can be assembled modularly, or run independently by di�erent
organizations. The privacy parameter accumulates at most additively across all executions that
use the same person’s record.

• We can view the privacy parameter as a budget to be divided among di�erent e�orts.

• For some algorithms, one gets a much better analysis by considering the steps jointly, rather than
using composition. (Exercise ??)

• Algorithms that access their data using summation queries can often be made di�erentially private
without too much loss of accuracy. We saw the example of Lloyd’s algorith,

• Useful statistical summaries may have to reveal information about an individual to an attacker.
However, we can make a more subtle claim: No matter what they know ahead of time, an attacker
seeing the output of a di�erentially private algorithm would draw (almost) the same conclusions
about Alice whether or not her data were used.

9

Additional Reading and Watching

• MinutePhysics’ Youtube video “When It’s OK to Violate Privacy”, 2019.
• More on the formulation of Theorem 3.1’: [KS14]
• A thorough proof of the impossibility of the “�rst attempt” privacy guarantee: [DN10] (see also

[KM11]).
• Why noisy sums can be used to �nd useful approximations to many natural procedures: [Kea93,

BDMN05, DMNS16].

References

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy: the
SuLQ framework. In Proceedings of the 24th Annual ACM Symposium on Principles of Database
Systems, PODS ’05, 2005. ACM.

[DMNS16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. Journal of Privacy and Con�dentiality, 7(3), 2016.

[DN10] Cynthia Dwork and Moni Naor. On the di�culties of disclosure prevention, or the case for
di�erential privacy. Journal of Privacy and Con�dentiality, 2(1), 2010.

[Háj19] Alan Hájek. Interpretations of Probability. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2019 edition,
2019.

[Kea93] Michael J. Kearns. E�cient noise-tolerant learning from statistical queries. In ACM Sympo-
sium on Theory of Computing. ACM, 1993.

[KM11] Daniel Kifer and Ashwin Machanavajjhala. No Free Lunch in Data Privacy. In SIGMOD,
2011.

[KS14] Shiva Prasad Kasiviswanathan and Adam D. Smith. On the ‘semantics’ of di�erential privacy:
A bayesian formulation. Journal of Privacy and Con�dentiality, 2014.

10

https://www.youtube.com/watch?v=FE9ko2wtyeQ

