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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. In the video and exercises, we described two approaches for obtaining no-regret sequences—best-
response and no-regret learning—and said they can be “mixed-and-matched” in the sense that Rowena
and Colin could each choose to adopt either of the two approaches. That’s not quite true. Why can’t we
obtain no-regret sequences by having Rowena and Colin simultaneously play best-responses to one
another?

2. In this question we’ll explore an alternative strategy where Colin and Rowena try to play best responses
to the previous action taken by the other player. Consider the following game from the last class’
exercises: [

+2 −1
−2 +3

]
(1)

(a) If you didn’t get to this in the last class, compute equilibrium strategies for Rowena and Colin.
(b) Suppose Rowena and Colin play the game for ) iterations, and for each C , Rowena and Colin both

play a best response to the strategy the other player used on the previous iteration C − 1. That is

rC = argmax
r

r>"cC−1 (2)

cC = argmin
c

r>C−1"c (3)

For concreteness, assume r1 = c1 = (1, 0), so Rowena starts by playing the top row and Colin starts
by playing the left column. Do the sequences of strategies converge to an equilibrium of the game?

(c) Consider the same setup as above, but now consider the average strategies

r̂) =
1
)

)∑
C=1

rC and ĉ) =
1
)

)∑
C=1

cC

Do r̂) and ĉ) converge to equilibrium strategies?

3. Prove that if r1, . . . , r) and c1, . . . , c) are two sequences that each have regret at most U to one another,
then r̂ = 1

)

∑
C rC and ĉ = 1

)

∑
C cC are 2U-approximate equilibrium strategies.

4. Specialize DualQuery to the case of threshold queries over the universe {1, . . . , �}. What do the
multiplicative-weights updates for the query-player look like? What do the best-response problems for
the data-player look like?
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5. The privacy analysis (and hence the accuracy analysis) of the DualQuery is somewhat subtle, and this
question will walk you through it at a high level. Recall that in DualQuery, given the query player’s
strategy rC , we sample queries 8C,1, . . . , 8C,( independently according to rC and set r̃C to be the uniform
distribution over those queries, and we want to understand how this sampling step ensures privacy
without dramatically reducing accuracy.

(a) First, the data player solves the optimization problem

IC = argmin
I

E
8∼r̃C
(−i8 (I))

when in fact they want to optimize with the query-player’s actual strategy rC . Show that if we
draw ( samples then with high probability, the data player’s output will satisfy

IC ≤ min
I
E

8∼rC
(−i8 (I)) + U

for someU = $ (
√
log |U|/(). Thus, the data player’s exact best response to r̃C is also an approximate

best-response to rC . [Hint: Cherno� Bounds!]
(b) The previous statement gives us some guidance on how many samples we need to draw from rC in

order to get good convergence properties, but why would those samples be private. Argue that if
we �x any sequence of responses I1, . . . , IC , and the query player computes rC using multiplicative
weights on the corresponding losses, with update parameter [, then each sample from the distri-
bution rC is private for some Y0 that may depend on [, =,) . [Hint: A few lectures ago we asked a
question about the speci�c form of the distribution maintained by multiplicative weights. Does it
look like any type of distribution we’ve studied in di�erential privacy?]

(c) Suppose we run DualQuery for ) iterations, with an update step size [, and in each iteration we
take ( samples from rC . What bound do we get on the accuracy of the output? [Hint: To get
intuition, it’s helpful to imagine that the bound you prove in part (a) holds with probability 1,
rather than “with high probability”, to avoid having to deal with small probabilities of failure in
di�erent steps of the algorithm]

(d) Suppose we set), [, ( in such a way that the resulting algorithm satis�es (Y, 0)-di�erential privacy.
How big do we need to set = in order to guarantee error U . Your bound should have a form like

= &
(log |U|)0 (log:)1

Y2U3

which is similar to what we obtain for MWEM up to the speci�c polynomial factors.
(e) How would your answer change if we aim for Y, X privacy (ignoring terms that are polynomial in

log(1/X), for simplicity).

6. Come up with a good April Fool’s question that we could have put on this set of exercises.
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