Privacy in Statistics and Machine Learning
 Spring 2021
 In-class Exercises for Lecture 16 (Synthetic data generation and MWEM)

March 25/26, 2021

Adam Smith and Jonathan Ullman

Problems with marked with an asterisk (*) are more challenging or open-ended.

1. In the previous lecture we showed that MWEM is (ε, δ)-differentially private and can answer a set of k queries on a dataset in \mathcal{U}^{n} with error at most $\leq \alpha$ on every query (with high probability), provided that

$$
n \gtrsim \frac{(\log |\mathcal{U}|)^{1 / 2}\left(\log \frac{1}{\delta}\right)^{1 / 2}(\log k)}{\varepsilon \alpha^{2}}
$$

Modify the analysis of the algorithm to ensure ($\varepsilon, 0$)-differential privacy? Prove a similar guarantee to above, showing that the algorithm is accurate provided that

$$
n \gtrsim \frac{(\log |\mathcal{U}|)^{a}(\log k)^{b}}{\varepsilon^{c} \alpha^{d}}
$$

for some constants a, b, c, d. What parts of the algorithm and its analysis have to change?
2. Consider a two-player zero-sum game described by a payoff matrix $M \in \mathbb{R}^{|\mathcal{R}| \times|\mathcal{C}|}$ and let (r, c) be a pair of equilibrium strategies. The support of a strategy is the set of actions with non-zero probability, so

$$
\operatorname{supp}(\mathbf{r})=\left\{i: \mathbf{r}_{i}>0\right\}
$$

and likewise for $\operatorname{supp}(\mathbf{c})$. Prove that every i in the support of \mathbf{r} is a best-response to \mathbf{c}. That is

$$
\forall i \in \operatorname{supp}(\mathbf{r}) \underset{j \sim \mathbf{c}}{\mathbb{E}}\left(M_{i, j}\right)=\max _{i^{\prime} \in \mathcal{R}} \underset{j \sim \mathbf{c}}{\mathbb{E}}\left(M_{i^{\prime}, j}\right)
$$

Note that the analogous statement (with min in place of max) will be true for all actions in the support of \mathbf{c} by symmetry, but don't spend time proving it separately.
3. Consider the two-player zero-sum game with two actions for each player described by the payoff matrix

$$
\left[\begin{array}{ll}
+2 & -1 \tag{1}\\
-2 & +3
\end{array}\right]
$$

Compute a pair of equilibrium strategies (\mathbf{r}, \mathbf{c}) for this game. [Hint: How does the property you proved in Question 2 help you find the equilibrium?]
4. The minmax theorem is the basis of one of the most widely used approaches for proving lower bounds on the performance of algorithms. Suppose we want to design an algorithm A that takes inputs from some finite set \mathcal{X} and computes something about x. We have some real-valued cost function $c(x, A)$ describing
the cost of running A on input x. (This cost could be running time, space usage, some measure of "error," how "pretty" the solution is. It doesn't really make a difference.) For a given algorithm A, the worst-case cost is

$$
\max _{\text {inputs } x} c(x, A)
$$

(a) Show that if there exists a distribution \mathbf{x} on inputs such that for every algorithm A

$$
\underset{x \sim \mathrm{x}}{\mathbb{E}}(c(x, A)) \geq T
$$

then for every (randomized) algorithm A, the worst-case cost is at least T.
(b) Show that if for every distribution on algorithms ${ }^{1} \mathrm{~A}$, there exists an input x such that

$$
\underset{A \sim \mathrm{~A}}{\mathbb{E}}(c(x, A)) \geq T
$$

then there exists a distribution on inputs \mathbf{x} such that for every algorithm A

$$
\underset{x \sim \mathbf{x}}{\mathbb{E}}(c(x, A)) \geq T
$$

In other words, if every (randomized) algorithm has to have high cost on some input, then there is a single distribution on inputs such that every (randomized) algorithm has to have high expected cost on that distribution.

[^0]
[^0]: ${ }^{1}$ For purposes of this question, let's assume that algorithms are defined by Boolean circuits of some finite size, so the set of algorithms is finite.

