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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. In the previous lecture we showed that MWEM is (Y, X)-di�erentially private and can answer a set of :
queries on a dataset inU= with error at most ≤ U on every query (with high probability), provided that
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Modify the analysis of the algorithm to ensure (Y, 0)-di�erential privacy? Prove a similar guarantee to
above, showing that the algorithm is accurate provided that
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for some constants 0, 1, 2, 3 . What parts of the algorithm and its analysis have to change?

2. Consider a two-player zero-sum game described by a payo� matrix " ∈ R |R |×|C | and let (r, c) be a pair
of equilibrium strategies. The support of a strategy is the set of actions with non-zero probability, so

supp(r) = {8 : r8 > 0}

and likewise for supp(c). Prove that every 8 in the support of r is a best-response to c. That is

∀8 ∈ supp(r) E
9∼c

(
"8, 9

)
= max
8′∈R

E
9∼c

(
"8′, 9

)
Note that the analogous statement (with min in place of max) will be true for all actions in the support
of c by symmetry, but don’t spend time proving it separately.

3. Consider the two-player zero-sum game with two actions for each player described by the payo� matrix[
+2 −1
−2 +3

]
(1)

Compute a pair of equilibrium strategies (r, c) for this game. [Hint: How does the property you proved
in Question 2 help you �nd the equilibrium?]

4. The minmax theorem is the basis of one of the most widely used approaches for proving lower bounds on
the performance of algorithms. Suppose we want to design an algorithm � that takes inputs from some
�nite set X and computes something about G . We have some real-valued cost function 2 (G,�) describing
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the cost of running � on input G . (This cost could be running time, space usage, some measure of “error,”
how “pretty” the solution is. It doesn’t really make a di�erence.) For a given algorithm �, the worst-case
cost is

max
inputs G

2 (G,�)

(a) Show that if there exists a distribution x on inputs such that for every algorithm �

E
G∼x
(2 (G,�)) ≥ )

then for every (randomized) algorithm �, the worst-case cost is at least ) .
(b) Show that if for every distribution on algorithms1 A, there exists an input G such that

E
�∼A
(2 (G,�)) ≥ )

then there exists a distribution on inputs x such that for every algorithm �

E
G∼x
(2 (G,�)) ≥ )

In other words, if every (randomized) algorithm has to have high cost on some input, then there is
a single distribution on inputs such that every (randomized) algorithm has to have high expected
cost on that distribution.

1For purposes of this question, let’s assume that algorithms are de�ned by Boolean circuits of some �nite size, so the set of
algorithms is �nite.
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