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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. The performance of gradient descent can vary a lot depending on how we choose the step size, even
for convex, one-dimensional problems. Suppose we run gradient descent with the loss function
!(F) = F2 and no constraints (that is, C = R).

• If we start atF0 = 1 and use step size [ = 2, how will the algorithm behave? Will it converge?
• How would your answer to the previous part change if we used [ = 1? What about [ = 1

2?
• How would you answer to the �rst part change if we imposed the constraintF8=C = [−10, 10]?

What aboutF ∈ [10, 20]?

2. Prove the following variant of the Ampli�cation by Subsampling Lemma.
Suppose that given an algorithm � whose input can be a data set of any size, we build a new
algorithm �′? as follows: on input x, construct a smaller data set x′ by including each data record
from x with probability ? , independently of other data records. Finally, return �(x′).
If � is (Y, 0)-DP under insertion/removal, then show that �′? is (Y ′, 0)-DP under insertion/removal,
where Y ′ = ln (1 + ? (4Y − 1)).

3. Let’s generalize the analysis of private SGD to the version where at each step, we use a uniformly
random batch �C of< records to estimate the gradient, so

6̃C =

(
1
<

∑
8∈�C
∇ℓ (FC−1;G8)

)
+ # (0, f2) .

Given X , we want to understand for which Y this step is (Y, X)-DP. Show that, as long as

f ≥ 2�
√
ln(1/X) · 1

<

the privacy cost of one step of gradient descent with subsampling is at most 4 times higher than it
would be if we had used the entire data set to estimate the gradient. In other words, subsampling
has virtually no e�ect on privacy as long the noise level is su�ciently high.

4. We analyzed gradient descent for the setting where the diameter ' of C is bounded. But suppose C
is not bounded—say C = R3 . We could still hope to get a good bound if our initial pointF0 is not
too far from a true optimumF∗. A friend conjectures that if one has a good idea of ‖F0 −F∗‖ , one
should be able to set [ to get a bound of the form

!(F̂) − !(F∗) ≤
� ×

(
some function of ‖F0 −F∗‖

)
√
)

.

1



Are they correct? What function belongs there?

5. It is common for the learning rate [ to decrease over the course of gradient descent. Suppose we
set [C = 1√

C
, and update the estimate as DC = FC−1 + [C∇!(FC−1). This way of doing things has the

bene�t that we don’t need to set the number of iterations ) ahead of time.
Show that, when � = ' = 1, we can get the same asymptotic risk bound of $ (1/

√
) ) for gradient

descent.
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