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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. The performance of gradient descent can vary a lot depending on how we choose the step size, even
for convex, one-dimensional problems. Suppose we run gradient descent with the loss function
L(w) = w? and no constraints (that is, C = R).

« If we start at wy = 1 and use step size n = 2, how will the algorithm behave? Will it converge?
« How would your answer to the previous part change if we used n = 1? What about 5 = %?

« How would you answer to the first part change if we imposed the constraint winC = [-10, 10]?
What about w € [10, 20]?

2. Prove the following variant of the Amplification by Subsampling Lemma.

Suppose that given an algorithm A whose input can be a data set of any size, we build a new
algorithm A}, as follows: on input x, construct a smaller data set x’ by including each data record
from x with probability p, independently of other data records. Finally, return A(x”).

If A is (¢, 0)-DP under insertion/removal, then show that A}, is (¢’,0)-DP under insertion/removal,
where ¢/ =In (1 + p(ef — 1)).

3. Let’s generalize the analysis of private SGD to the version where at each step, we use a uniformly
random batch B, of m records to estimate the gradient, so

gt = (% Z Vf(Wt—l;xi)) +N(0,0%).

i€B;

Given 8, we want to understand for which ¢ this step is (¢, §)-DP. Show that, as long as
1
o > 2G+/In(1/6) - —
m

the privacy cost of one step of gradient descent with subsampling is at most e times higher than it
would be if we had used the entire data set to estimate the gradient. In other words, subsampling
has virtually no effect on privacy as long the noise level is sufficiently high.

4. We analyzed gradient descent for the setting where the diameter R of C is bounded. But suppose C
is not bounded—say C = R?%. We could still hope to get a good bound if our initial point wy is not
too far from a true optimum w*. A friend conjectures that if one has a good idea of ||wy — w*||, one
should be able to set 5 to get a bound of the form

G X (some function of ||wg — w*||)

L(W) — L(w") < =




Are they correct? What function belongs there?

. It is common for the learning rate 7 to decrease over the course of gradient descent. Suppose we
setn; = \/i;, and update the estimate as u; = w;—1 + ;VL(w;_1). This way of doing things has the
benefit that we don’t need to set the number of iterations T ahead of time.

Show that, when G = R = 1, we can get the same asymptotic risk bound of O(1/VT) for gradient
descent.



