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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Consider the Euclidean median problem in 3-dimensional space: given G1, G2, ..., G= ∈ R3 , de�ned by
ℓ (F ;G) = ‖F − G ‖2. (If the norm were squared, the minimizer would be the mean, but the square
root changes its behavior.)
What is the gradient of the individual loss function? What conditions if any do we need on C (the
set of acceptableF ) andU (the set of allowed G ) for the loss to be Lipschitz?
Is the loss convex?

2. Show that if the individual loss ℓ is�-Lipschitz on a set C, then so is the overall loss ! from equation
(1) in the notes (assuming no additional regularizer Λ).

3. Show that ERM for�-Lipschitz losses on a set of diameter ' can be reduced by rescaling to ERM for
1-Lipschitz losses for a set of diameter 1. Show that the excess risk increases by a factor of�' due
to the rescaling. (Reminder: Re-scaling the input domain changes � as well as ', since it compresses
distances. )

4. Consider the following wacky idea: given a �-Lipschitz loss function ℓ : C ×U → R, you decide to
optimize !(F ; x) di�erentially privately by running the exponential mechanism with score

@(F ; x) = −‖∇!(F ; x)‖2 .

(a) Show that this score function is 2�
=

-sensitive, so sampling from ? (F) ∝ exp(− Y=4�@(F ; x)) is
(Y, 0)-DP.

(b) Suppose you run this algorithm to optimize the median’s objective function given by ℓ (F ;G) =
|F − G |, with F and the G8 ’s restricted to the interval C = U = [0, 1]. What algorithm from
class or homework do you recover?

(c) Suppose you run this algorithm to optimize the mean’s objective function given by ℓ (F ;G) =
(F − G)2, withF and the G8 ’s restricted to the interval C = U = [0, 1]. What algorithm from
class or homework do you recover?

(Continued on next page.)
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Exercises about convex sets and functions

5. Which of these operations, when applied to a set of convex functions, always produces a convex
function?

• Sum
• Min
• Max
• Median

6. Show that the set of minima of a convex function is a convex set.

7. Show that for any closed, nonempty convex set C ⊆ R3 , the function 5 (G) = minF∈C ‖G −F ‖2 is a
convex function on all of R3 . [Hint: First prove this for 3 = 2. The general case 3 > 2 is a bit harder
to visualize, and can be skipped if you are short on time.]

8. Show that for any closed, nonempty convex setC ⊆ R3 , the projection functionΠC (G) = argminF∈C ‖G−
F ‖2 is (a) a well-de�ned function from R3 to R3 (that is, the minimizer is unique), (b) 1-Lipschitz,
meaning that for all G,~ ∈ R3 , we have

‖ΠC (G) − ΠC (~)‖2 ≤ ‖G − ~‖2

[Hint: First prove this for 3 = 2. The general case 3 > 2 is a bit harder to visualize, and can be
skipped if you are short on time.]

9. Prove Jensen’s inequality (Exercise 3.4 in the notes). [Hint: Let ` = E (- ) and let 6` (·) be an a�ne
lower bound to 5 such that 5 (`) = 6` (`). What is E

(
6` (- )

)
?]

10. The level set of a function 5 at 0 is the set {F ∈ C : 5 (F) ≤ 0}. Show that if 5 is convex, then all of
its level sets are convex. Show via a counterexample that the converse is false.

11. (*) Suppose 5 : R→ R is convex.

(a) Show that the subgradients of 5 are monotone, namely: for every G1, G2 ∈ R such that G1 < G2,
if ~1 ∈ m5 (G1) and ~2 ∈ m5 (G2), then ~1 ≤ ~2. (It might be easier to �rst prove this for 5 that is
di�erentiable.)

(b) Show that if 5 is convex and 1-Lipschitz on a �nite interval (say [−1, 1]), then it can be written
a constant plus a convex combination of absolute value functions. Speci�cally, show that there
is a constant 0 and a distribution % on [−1, 1] such that for all G , 5 (G) = 0 + E

.∼%
( |G − . |).
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