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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Consider the following mechanism NSX . On input x = (G1, ..., G=), for each 8 from 1 to =, it generates

.8 =

{
(8, G8) w.p. X ,
⊥ w.p. 1 − X .

(1)

and outputs (.1, . . . , .=). Here ⊥ is just a special symbol meaning “no information.” Show that NSX
satis�es (0, X)-DP. Discussion Topic: Given that NSX satis�es (0, X)-DP, do you think that (Y, X)-DP
is a suitable de�nition of privacy when X ≥ 1/=?

2. Suppose we add uniform noise to a count query, that is, we release �_ (x) = 5 (x) +* [−_,_] where
5 counts how many records staistfy some condition, and * [−_,_] is uniformly distributed in the
interval [−_, _]. How large must _ be to satisfy (Y, X)-DP? Do both Y and X matter in setting _?
When X < 1/=, will this mechanism produce useful information?

3. Show that for every Y, X > 0, there is a mechanism � such that

(a) for every pair of neighboring data sets x, x′, for every ~ ∈ Y,

P (�(x) = ~) ≤ 4Y · P (�(x′) = ~) + X

(that is, the DP condition holds for singleton events � = {~}), but
(b) � does not satisfy (Y ′, X ′)-DP for any �nite Y ′ and X ′ < 1.

To avoid technical issues with continuous ranges and density functions, your mechanism should
output a discrete value, so that the probabilities in the above description are all well de�ned. Hint:
Try starting with some mechanism � that is blatantly not private, then modify it to make it satisfy
the �rst condition.

4. For _, g > 0, the truncated Laplace distribution Lap(_, g) is de�ned by the density function

?_,g (~) =
{

1
/
4−|~ |/_ |~ | ≤ g

0 |~ | > g
(2)

where / =
∫ g

−g 4
−|~ |/_3~ is a normalizing constant. Prove that for any real-valued statistic 5 , the

mechanism
�(x) = 5 (x) + Lap

(
Δ

Y
,
Δ

Y
· log(1/X)

)
(3)

satis�es (Y,$ (X))-di�erential privacy, where Δ is the global sensitivity of 5 .
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5. (*) Prove the basic (non-adaptive) composition theorem for (Y, X)-di�erential privacy: if �1 is
a mechanism that is (Y1, X1)-DP and �2 is a mechanism that is (Y2, X2)-DP, then the composed
mechanism �(x) = (�1(x), �2(x)) is (Y1 + Y2, X1 + X2)-DP.

Note: You may �nd that your �rst attempt yields a weaker bound, namely that the composed protocol
is (Y1 + Y2, X1 + 4Y1X2)-DP (or something similar). That’s ok, but see if you can prove the tighter bound
above.

6. Histograms. Consider the following algorithm for releasing histograms.

Algorithm 1: Stable Histogam(x; Y, X)
Input: x is a multi-set of values inU.

1 for every I ∈ U that appears in x do 2̃I = # {8 : G8 = I} + Lap(1/Y)s
2 Release the set of pairs {(I, 2̃I) : 2̃I > g} where g = 1 + ln(1/X)

Y
.

(a) Show that for any domainU, Algorithm 1 is (Y, X)-di�erentially private when neighboring
data sets are allowed to di�er by the insertion or deletion of one value.
Hint: The delicate part of this result is that we add noise only to counts of non-empty bins.
(For example, if we were counting how many people live on each square mile of land in Alaska,
most of the bins would be empty, but others would have lots of people.) There are two kinds
of adjacent data sets: those where the set of nonempty bins changes, and those where it does
not. You may need the following simple concentration bound for Laplace random variables: If
. ∼ Lap(_), then for every C > 0, we have Pr(. > _C) ≤ 1

2 exp(−C).
(b) Prove that the Stable Histograms algorithm is not (Y ′, 0) di�erentially private for any �nite

positive value Y ′. [Hint: Give two neighboring data sets and a histogram ~ such that ~ is a
possible output for only one of the two data sets.]
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