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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. Suppose we run the exponential mechanism (or report-noisy-max/RNM) with outcome set Y and
score function @ : Y × X= → R with sensitivity Δ. The theorems in the notes show that we expect
the error @max − @(�(x)) to be $ (Δ ln(3)/Y), but it might be much better.

Speci�cally, �x a data set x. Suppose the “true winner” for x, the outcome ~∗ with score @max, is
substantially better than all other outcomes, namely, for every ~ ≠ ~∗,

@(~) < @max −
2Δ(ln(3) + C)

Y

Show that the algorithm will output ~∗ with probability at least 1 − 4−C .

2. Show that, after running the exponential mechanism with privacy parameter Y, we can use the
Laplace mechanism to estimate the error @max − @(�(x)) with noise only 2Δ/Y. What is the total
privacy cost of the combined algorithm?

3. Suppose you have a graph with a �xed vertex set + , and where each individual data point G8 is an
undirected edge {D, E} ∈ + ×+ . Consider the problem of �nding a near-minimum cut in the graph.
This is a partition of + into two disjoint sets �, � of nodes. The weight of the cut is the number of
edges that cross from � to � (so D ∈ � and E ∈ � or vice versa). The weight of a cut can be as large
as the size of the data set =, and = can be as large as Ω( |+ |2).

(a) Use the exponential algorithm (or report noisy max) to design an algorithm that returns a cut
with expected weight min-weight+$ ( |+ |/Y) It’s OK if your algorithm runs in time polynomial
in 2 |+ | .

(b) (**) There can be multiple distinct minimum cuts in a graph. However, one neat (and highly
non-trivial to prove) fact is that ifF∗ is the number of edges in the minimum cut, the number
of distinct cuts with weight ≤ 2F∗ is at most $ ( |+ |22). Using this fact, prove that the error
of the exponential mechanism (or RNM) is actually much better, and it outputs a cut with
expected weight min-weight +$ (log( |+ |)/Y)

4. (*) Prove that Report Noisy Max with exponential noise (Alg. 2 in the notes) is di�erentially private.

5. Show that the accuracy guarantees we showed for the exponential mechanism (and RNM) are
basically tight in general. Speci�cally,
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(a) give an input to the approval voting problem with 3 candidates, on which @max = = =
ln(3)
2Y

but the algorithm ��" will return a candidate who received 0 votes with constant probability
(independent of 3).

(b) (**) Consider the family of data sets
{
x(1) , ..., x(3)

}
de�ned as follows: in x( 9) , one candidate

9 receives @max = = =
ln(3)
2Y votes and all others receive 0 votes. Show that for every Y-

di�erentially private � algorithm, if we choose � uniformly at random in [3], then with
constant probabililty �(x( � ) ) will return a candidate other than � . [That is, � will fail to �nd
the winner for many datasets of this form.]
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