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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. What happens if we try to run the Laplace mechanism with di�erent noise distributions? Which of
these distributions leads to an Y-DP mechanism? For simplicity, we’ll focus on the 1-dimensional
case were 5 : X= → R, and look at mechanisms of the form

�(x) = 5 (x) +
�( 5

Y
/ where / ∼ % and % = ... (1)

(a) The uniform distribution on [−1, 1] (density ℎ(~) = 1/2 on [−1, 1] and 0 elsewhere)
(b) The Normal distribution # (0, 1) (density ℎ(~) = 1√

2c
4−

1
2 ~

2 for ~ ∈ R)

(c) The Cauchy distribution (density ℎ(~) = 1
c (1+~2) for ~ ∈ ')

For which of the options above do we get an Y ′-DP mechanism where Y ′ is �nite (not that Y ′ need
not be exactly equal to Y)?

2. Consider the following two scenarios. For each one, decide whether the overall algorithm can be
proven di�erentially private and justify your decision.

(a) A biologist uses an Y-DP algorithm �1 to release the approximate frequencies of 3 di�erent
diseases in the data set. She then selects the 10 diseases with the highest reported frequencies
in the output of �1, and uses a Y-DP algorithm to release an approximate version of all

(10
2
)

pairwise correlations between the selected diseases.
(b) A biologist uses an Y-DP algorithm to release the approximate frequencies of3 di�erent diseases

in the data set. She then selects the 10 diseases with the highest true frequencies in the original
data set, and uses a Y-DP algorithm to release all

(10
2
)

pairwise correlations between the selected
diseases.

3. (Exercise 1.4 from the notes) Sometimes it is much better to analyze an algorithm as a whole than to
use the composition lemma. Consider the histogram example from Lecture 4, where X is written
as a partition of disjoint sets �1, �2, ..., �3 , and we want to count how many records lie in each set.
Viewed as one 3-dimensional function, the histogram has global sensitivity 2. We could also view
it as 3 separate functions =1, =2, ..., =3 , each with globabl sensitivity 1. How much noise would the
Laplace mechanism add to these counts if we ran it spearately for each of the = 9 with privacy budget
divided equally among them? How does that compare to running the Laplace mechanism once on
the joint function?

4. Prove Theorem 3.1 from the lecture notes (Exercise 3.2).
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5. Analyze the name and shame algorithm (Exercise 3.3).

6. (*) Can the Laplace mechanism be substantially improved? Answering that is complicated, but let’s
look at a sense in which the Laplace mechanism is basically optimal.

Fix a function 5 : X= → R. Suppose that 1/Y is an integer, and there are two data sets x, x̃ that di�er
in 1/Y entries, and such that |5 (x) − 5 (x̃) | = �( 5 /Y. Show that for every Y-DP algorithm �, for at
least one the two data sets x and x̃, the expected absolute value of the algorithm’s error is Ω(�(/Y).
That is, show that

max{E( |�(x) − 5 (x) |) , E( |�(x̃) − 5 (x̃) |)} ≥ 2 ·
�( 5

Y

for some absolute constant 2 (e.g. 2 = 1/100 will do).

Hint: You can simplify things a bit by using group privacy to show that �(x) ≈Y′ �(x̃) for Y ′ = 1.

Hint 2: If� is a nonnegative random variable and Pr(� ≥ `) ≥ 1
100 , then E(�) ≥ `/100 (by Markov’s

inequality).

Hint 3: Look at the events that the algorithm’s output is either at least 5 (x)+5 (x̃)
2 or at most that

quantity.
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