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1. Let A be an ¢-DP mechanism mapping X" to the set Y, let E C Y be an event, and let x, x" be
neighboring data sets.

What is the shape of the region of possible pairs (p, q) € [0,1]? such that p = P(A(x) € E) and
q = P(A(x’) € E)? Can you describe it geometrically? As ¢ shrinks, does it get bigger or smaller?
Are there points in [0, 1]? that are not contained in this region for any finite 0 < ¢ < c0?

2. Prove or disprove: Let A : X" — Y be a deterministic algorithm where X has at least two different
values. If A is e-DP for some finite ¢, then A ignores its input, that is, A(x) is the same value
regardless of x.

3. Suppose we use the Laplace mechanism to estimate the number of individuals in a data set who
reside in each of the 3,143 counties! in the US, using parameter ¢ = 0.1. What does Lemma 4.4
imply about the expected error of the count for Suffolk County, MA? What does it imply about
the expectation of the largest error in the estimate of any county population?

4. Suppose we have a counting query f(x) = X, ¢(x;) where ¢ : X — {0,1}. The Laplace
mechanism answers this query with noise parameter 1/¢. Now consider the function f(% (x)
which outputs a vector of identical values

F D) = (f(x), f(X), . f(X)).

d times

What is the global sensitivity of (@ (x)? Suppose you want to estimate f(x) from the answer
of the Laplace mechanism on query (9. How would you estimate f(x) and what would the
variance of your estimate be? Does it increase, decrease, or stay roughly the same as d increases?

5. How does differential privacy interact with reconstruction attacks?

Suppose A is an ¢-differentially private algorithm that takes input x = (x1, x, ..., x,) € {0, 1}".
Consider an algorithm B that attempts to reconstruct the input from A’s output: on input A(x), it
outputs a guess X. Show that, for every algorithm B: if x is selected uniformly at random from
{0,1}", and the algorithm B has access only to the output of A (nothing else), then
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Here, # errors(y, x) denotes the number of positions in which two vectors disagree (also called
the Hamming distance). >

IThis number includes county equivalents, and was drawn from the Wikipedia article “List of United States counties and
county equivalents” in February 2021.

2In other words: when e is small, differentially private algorithms do not allow for non-trivial reconstruction attacks. Even
with no output at all, an attacker can always guess about % of the bits of x in expectation (for example, by guessing the all-zeros
string). The result above says that a attack based on differentially private output cannot do much better in expectation.



Hints: Use linearity of expectation. The number of errors can be written as a sum of randm
variables E; (for i = 1 to n), where E; is 1 if X; = x; and 0 otherwise. What can you say about
the conditional distribution of x; given a particular output A(x) = a? How big or small can
Pr(x; = 1|A(x) = a) be? Given that, what is the largest possible probability that E; = 1? What
does that tell you about E;’s expected value? It might be helpful to think about what happens
when A is the randomized response mechanism, though your final proof should apply to any e-DP
algorithm.



