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1. Let � be an Y-DP mechanism mapping X= to the set Y, let � ⊆ Y be an event, and let x, x′ be
neighboring data sets.
What is the shape of the region of possible pairs (?, @) ∈ [0, 1]2 such that ? = P(�(x) ∈ �) and
@ = P(�(x′) ∈ �)? Can you describe it geometrically? As Y shrinks, does it get bigger or smaller?
Are there points in [0, 1]2 that are not contained in this region for any �nite 0 < Y < ∞?

2. Prove or disprove: Let� : X= → Y be a deterministic algorithm whereX has at least two di�erent
values. If � is Y-DP for some �nite Y, then � ignores its input, that is, �(x) is the same value
regardless of x.

3. Suppose we use the Laplace mechanism to estimate the number of individuals in a data set who
reside in each of the 3,143 counties1 in the US, using parameter Y = 0.1. What does Lemma 4.4
imply about the expected error of the count for Su�olk County, MA? What does it imply about
the expectation of the largest error in the estimate of any county population?

4. Suppose we have a counting query 5 (x) = ∑=
8=1 i (G8) where i : X → {0, 1}. The Laplace

mechanism answers this query with noise parameter 1/Y. Now consider the function 5 (3) (x)
which outputs a vector of identical values

5 (3) (x) = (5 (x), 5 (x), ..., 5 (x)︸                  ︷︷                  ︸
3 times

) .

What is the global sensitivity of 5 (3) (x)? Suppose you want to estimate 5 (x) from the answer
of the Laplace mechanism on query 5 (3) . How would you estimate 5 (x) and what would the
variance of your estimate be? Does it increase, decrease, or stay roughly the same as 3 increases?

5. How does di�erential privacy interact with reconstruction attacks?
Suppose � is an Y-di�erentially private algorithm that takes input x = (G1, G2, ..., G=) ∈ {0, 1}= .
Consider an algorithm � that attempts to reconstruct the input from �’s output: on input �(x), it
outputs a guess x̃. Show that, for every algorithm �: if x is selected uniformly at random from
{0, 1}= , and the algorithm � has access only to the output of � (nothing else), then

E
x∈A {0,1}=
x̃=� (�(x))

(# errors(x̃, x)) ≥ =

4Y + 1

Here, # errors(~, G) denotes the number of positions in which two vectors disagree (also called
the Hamming distance). 2

1This number includes county equivalents, and was drawn from the Wikipedia article “List of United States counties and
county equivalents” in February 2021.

2In other words: when Y is small, di�erentially private algorithms do not allow for non-trivial reconstruction attacks. Even
with no output at all, an attacker can always guess about =2 of the bits of x in expectation (for example, by guessing the all-zeros
string). The result above says that a attack based on di�erentially private output cannot do much better in expectation.
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Hints: Use linearity of expectation. The number of errors can be written as a sum of randm
variables �8 (for 8 = 1 to =), where �8 is 1 if x̃8 = G8 and 0 otherwise. What can you say about
the conditional distribution of G8 given a particular output �(x) = 0? How big or small can
Pr(G8 = 1|�(x) = 0) be? Given that, what is the largest possible probability that �8 = 1? What
does that tell you about �8 ’s expected value? It might be helpful to think about what happens
when� is the randomized response mechanism, though your �nal proof should apply to any Y-DP
algorithm.
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