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Problems with marked with an asterisk (*) are more challenging or open-ended.

1. (More on pre�x sums.) Recall the pre�x sum queries from the previous lecture. The = pre�x sums
are the queries of the form

∑8
9=1 B 9 (for 8 from 1 to =), whcih correspond to query vectors

�8 = (1, 1, . . . , 1︸     ︷︷     ︸
8 ones

, 0, 0, . . . , 0︸     ︷︷     ︸
=−8 zeros

)

Suppose we tried to prove the reconstruction theorem (Thm 2.5) using pre�x sums instead of random
queries. Which steps of the proof would fail and why? Can the proof be repaired without signi�cantly
changing the result (i.e. without changing more than the speci�c constants involved)?

2. (Reconstruction via linear programming.) Consider the reconstruction attack that takes as input
query vectors �1, . . . , �: ∈ {0, 1}= and noisy answers 01, . . . , 0: ∈ R and return the vector B̂ ∈ [0, 1]=
that minimizes

max
8=1,...,:

|�8 · B̂ − 08 | (1)

Show how to write a linear program of the form introduced in the notes whose solution is the
optimal vector B̂ .

3. (More accurate reconstruction with more random queries.) In this question we’ll explore how to
interpolate between the two reconstruction theorems we’ve seen. Speci�cally, we will prove a
version of Theorem 2.5 that gives a more accurate reconstruction when we have : � = queries.
Suppose we have the following version of Claim 2.6 from the lecture notes:

Claim 0.1. Let C ∈ {−1, 0, +1}= be a vector with at least< non-zero entries and let D ∈ {0, 1}= be a
uniformly random vector. Then for every parameter 2 ≤ F � 2<

P

(
|D · C | ≥

√
< logF
10

)
≥ 1
F

(2)

Using this claim, prove the following theorem

Theorem 0.2. If we ask =2 � : � 2= queries, and all queries have error at most U=, then with
extremely high probability, the reconstruction error is at most $ ( U2=2

log(:/=) ).

How does this theorem compare to the reconstruction attacks we’ve seen for : ≈ =2? What about
: ≈ 2

√
=? What about : ≈ 2=?
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4. (Preventing reconstructon with subsampling) Consider a dataset x = (G1, . . . , G=). Now �x< = =
5 and

we will de�ne the subsampled dataset . = (~1, . . . , ~<) as follows. For each 9 ∈ [<], independently
choose a random element 9 ′ ∈ [=] and set ~ 9 = G 9 ′ . Note that the sampling is independent and with
replacement. Suppose we now use . to compute the statistics in place of x. That is, using

5 · 5 (. ) = 5 ·
<∑
9=1

i (~ 9 ) (3)

in place of the true answer

5 (x) =
=∑
9=1

i (G 9 ) (4)

Note that we multiply by 5 to account for the fact that< = =
5 . Prove that this random subsample

will simultaneously give a good estimate of the answers to many statistics. Speci�cally, one can
prove the following result

Claim 0.3. Prove that for any set of statistics 51, . . . , 5: , with probability at least 99
100 ,

∀8 ∈ [:] :

�����5 · <∑
9=1

i8 (~ 9 ) −
=∑
9=1

i8 (G 9 )
����� ≤ $ (√

= log:
)

(5)

For this problem you will likely want to use the following form of “Cherno� Bound”: if /1, . . . , /<
are independent where each / 9 has expectation E

(
/ 9

)
= ` and / 9 takes values in [0, 1] then for

everyF > 0,

P

( ����� <∑
9=1

/ 9 −<`
����� > C√<

)
≤ 4−C2/3 (6)
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