
Privacy in Statistics and Machine Learning Spring 2021
Homework 1: Due Friday, February 12, 2021

Adam Smith and Jonathan Ullman

Collaboration and Honesty Policy Reminder: Collaboration in the form of discussion is allowed.
However, all forms of cheating (copying parts of a classmate’s assignment, plagiarism from papers or
old posted solutions) are NOT allowed. A rough rule of thumb: you should be able to walk away from a
discussion of a homework problem with no notes at all and write your solution on your own. Finding
answers to problems on the Web or from other outside sources (these include anyone not enrolled in
the class) is forbidden.

• You must write up each problem solution by yourself without assistance, even if you collaborate with
others to solve the problem.

• You must identify your collaborators. If you did not work with anyone, you should write “Collab-
orators: none."

• Asking and answering questions in every forum the class provides (on Piazza, in class, and in
o�ce hours) is encouraged!

• Even though look up answers is forbidden, using the web to �nd alternative explanations of
concepts you need for the homework is allowed, and encouraged. For example, you can look
up background on probability and linear algebra, documentation for particular programming
languages, etc.

Problems to be handed in

1. (Randomized response—Exercise 3 from Lecture 1’s in-class exercises.) Consider the second random-
ized response mechanism described in Lecture 1: On input a function i : X → {0, 1} and a dataset
x = (G1, ..., G=) where each G8 is in domain X, compute

.8 =

{
i (G8) w.p. 4Y

4Y+1 ,

1 − i (G8) w.p. 1
4Y+1 .

and return (.1, ..., .=).
Give a procedure that, given the outputs .1, ..., .= from randomized response on input G1, ..., G= ,
returns an estimate � such that√√√√

E
©«
(
� −

=∑
8=1

i (G8)
)2ª®¬ =

4Y/2

4Y − 1
√
= .

The randomness here is over the choices of the randomized response mechanism. [Hint: How would
you choose 0, 1 ∈ R so that E(0.8 − 1) = G8?]

2. (Global Sensitivities.) For all of the following cases, assume we have a datset x = (G1, . . . , G=) ∈ X=

and a function 5 : X= → R3 (for some 3 that varies between the di�erent parts of the question). For
each of the following functions 5 and data domains X, (i) give as tight a bound as you can on the

1

global sensitivity of the function 5 . If the sensitivity is not bounded, answer∞. (ii) Give as tight a
bound as you can on the diameter of the range of 5 : speci�cally, what is the maximum di�erence (in
ℓ1 norm) between two possible outputs of 5 ?

(a) The high-dimensional mean 5 (x) = 1
=

∑=
8=1 G8 when X = {E ∈ R3 : ‖E ‖1 ≤ 1}.

(b) The unnormalized covariance matrix when X = {E ∈ R3 : ‖E ‖1 ≤ 1} . Here 5 (G) = � is a
3 × 3 symmetric matrix with entries � 9,: =

∑=
8=1 G8 (9)G8 (:), and G8 (9) refers to the 9-th entry

of vector G8 . In other words, if we write the input as a = × 3 matrix - whose rows are the G8 ,
then 5 (x) = -)- . To measure sensitivity, we think of 5 (x) as a single vector of length 32.

(c) The median 5 (x) = median(G1, ..., G=), when X = [0, 1].
(d) Consider an arbitrary domainX, and : di�erent predicates 51, .., 5: (so each 59 mapsX to {0, 1}).

Let 5 (G) = max9=1,...,: 1
=

∑=
8=1 59 (G8).

(e) The US government uses a speci�c algorithm� to decide, based on state populations, how many
of the 435 seats in the House of Representatives will go to each state.1 This “apportionment” is
recalculated after each decennial Census. For simplicity, think of the Census data set as just
recording each person’s state of residence, so X = {1, ..., 50}.
Let 5 (x) be the function that reports the number of people whose residence would need to
change in order to change the apportionment � (x). In other words, 5 (x) is the Hamming
distance to the nearest data set y with � (y) ≠ � (x).

(f) Suppose we a �xed set of vertices+ (independent of the data set). Our data set is a list of edges:
each G8 is a pair of vertices (D, E) (so that X = + ×+). Let �x be the resulting graph, and let
5 (x) denote the number of connected components in �x.

(g) Let X = + ×+ as above, and let 5 (x) be the length of the shortest path between two speci�c
vertices (let’s say vertices number 1 and 2, assuming they are numbered 1 through |+ |). (If no
path exists, the length of the shortest path is∞).

(h) Let X = + ×+ as above, and let 5 (x) be the number of edge-disjoint paths from vertex 1 to
vertex 2.

3. (In-class Exercise 3 from Lecture 3: More accurate reconstruction with more random queries.) In
this question we’ll explore how to interpolate between the two reconstruction theorems we’ve seen.
Speci�cally, we will prove a version of Theorem 2.5 that gives a more accurate reconstruction when
we have : � = queries. Suppose we have the following version of Claim 2.6 from the lecture notes:

Claim 0.1. Let C ∈ {−1, 0, +1}= be a vector with at least< non-zero entries and let D ∈ {0, 1}= be a
uniformly random vector. Then for every parameter 2 ≤ F � 2<

P

(
|D · C | ≥

√
< logF
10

)
≥ 1
F

(1)

Using this claim, prove the following theorem

Theorem 0.2. If we ask =2 � : � 2= queries, and all queries have error at most U=, then with
extremely high probability, the reconstruction error is at most $ (U2=2

log(:/=)).

1The exact algorithm doesn’t matter here, but it’s called the “Huntingdon-Hill method”.

2

How does this theorem compare to the reconstruction attacks we’ve seen for : ≈ =2? What about
: ≈ 2

√
=? What about : ≈ 2=?

4. A social media company wants to provide information to its advertisers on how often people click
on their ads. You work for an advertiser. Each hour, the company gives you the demographic pro�le
of one user who saw your ad. This demographic pro�le is rich enough for you to identify the user
in your own database. They also give you a running count of the number of users who have actually
clicked on your ad. They add a little bit of noise “to protect users’ privacy”, but you suspect that you
can derive a good guess as to who, exactly clicked on your ads.

We’ll model this as follows: there is a sequence x of secret bits, G1, G2, G3, ..., G= ∈ {0, 1}. The bit G8
indicates that the 8th user clicked on the ad.

The mechanism for releasing the running counter works as follows: At each time step 8 = 1, 2, ..., =,
select a uniformly random bit /8 (independently of previous ones) and output

08 =

8∑
9=1

G 9 + /8 .

(In other words, at each step, we �ip a coin to decide whether we should add one fake person to the
counter or not).

How well can one recover the vector x from the sequence of outputs ®0? The answer depends on
what we know about x ahead of time. We will consider two situations:

(a) The bits of x are uniformly random and independent. The only input to the attacker is ®0 (the
vector of noisy counters).

(b) The bits of x are uniformly random and independent, but the attacker has some extra in-
formation. For each 8 , the attacker has a guess F8 which is equal to G8 with probability 2/3,
independently for each 8 . The attacker’s inputs consist of ®0 and the vector of guesses ®F .

For each of these situations, your job is to come up with as good an algorithm as you can to guess
the entries of x. You should evaluate your algorithm by coding it up (in a language of your choice)
and plotting the fraction of bits of x recovered by your algorithm for = = 100, 500, 1000, 5000, and, if
you can, 50, 000. (You should run the algorithm on fresh random inputs at least 20 times for each
values of =, and report the mean and standard deviation for each one.) You’ll need to code up the
release mechanism, too, in order to run the experiments.

You may use standard linear algebra libraries (such as those provided by numpy in Python). You may
use standard solvers for linear systems or linear programs.

You should submit a single PDF �le containing

• A written description of your algorithms (whatever mix of English and pseudocode you like is
�ne—it should be clear, readable, and self-contained). (Maximum 1 page each)

• Plots of your results for each of the two settings
• Discussion of your results (Maximum 1/3 page)
• Documented code
• (Optional) A link to a public repository with your code, ideally in a notebook format.

3

To receive full credit, your algorithms should recover signi�cantly more than 3/4 of the bits of x in
case 1, and signi�cantly more than 4/5 of the bits of x in case 2. There is no speci�c running time
requirement, but you should ideally be able to run experiments with = = 50, 000, so exponential time
algorithms won’t be feasible, and even quadratic-time algorithms will be painfully slow. You can use
any of the techniques from class, or ones you invent. See how well you can do!

4

